Reference: Yu G, et al. (2015) Predicting protein function via downward random walks on a gene ontology. BMC Bioinformatics 16:271

Reference Help

Abstract


Background: High-throughput bio-techniques accumulate ever-increasing amount of genomic and proteomic data. These data are far from being functionally characterized, despite the advances in gene (or gene's product proteins) functional annotations. Due to experimental techniques and to the research bias in biology, the regularly updated functional annotation databases, i.e., the Gene Ontology (GO), are far from being complete. Given the importance of protein functions for biological studies and drug design, proteins should be more comprehensively and precisely annotated.

Results: We proposed downward Random Walks (dRW) to predict missing (or new) functions of partially annotated proteins. Particularly, we apply downward random walks with restart on the GO directed acyclic graph, along with the available functions of a protein, to estimate the probability of missing functions. To further boost the prediction accuracy, we extend dRW to dRW-kNN. dRW-kNN computes the semantic similarity between proteins based on the functional annotations of proteins; it then predicts functions based on the functions estimated by dRW, together with the functions associated with the k nearest proteins. Our proposed models can predict two kinds of missing functions: (i) the ones that are missing for a protein but associated with other proteins of interest; (ii) the ones that are not available for any protein of interest, but exist in the GO hierarchy. Experimental results on the proteins of Yeast and Human show that dRW and dRW-kNN can replenish functions more accurately than other related approaches, especially for sparse functions associated with no more than 10 proteins.

Conclusion: The empirical study shows that the semantic similarity between GO terms and the ontology hierarchy play important roles in predicting protein function. The proposed dRW and dRW-kNN can serve as tools for replenishing functions of partially annotated proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yu G, Zhu H, Domeniconi C, Liu J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference