Reference: Swinnen S, et al. (2015) Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress. Eukaryot Cell 14(9):884-97

Reference Help

Abstract


Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Swinnen S, Goovaerts A, Schaerlaekens K, Dumortier F, Verdyck P, Souvereyns K, Van Zeebroeck G, Foulquié-Moreno MR, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference