Reference: Bodman JAR, et al. (2015) Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling. J Biol Chem 290(8):4705-4716

Reference Help

Abstract


Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bodman JAR, Yang Y, Logan MR, Eitzen G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference