Reference: Fasullo M, et al. (2014) Activation of aflatoxin B1 by expression of human CYP1A2 polymorphisms in Saccharomyces cerevisiae. Mutat Res Genet Toxicol Environ Mutagen 761:18-26

Reference Help

Abstract


Human susceptibility to environmental carcinogens is highly variable and depends on multiple genetic factors, including polymorphisms in cytochrome P450 genes. Although epidemiological studies have identified individual polymorphisms in cytochrome P450 genes that may alter cancer risk, there is often conflicting data about whether such polymorphisms alter the genotoxicity of environmental carcinogens. This is particularly true of the CYP1A2 polymorphisms that confer differential activation of multiple human carcinogens. To determine whether a single cytochrome P450 polymorphism confers higher levels of carcinogen-associated genotoxicity, we chose an organism that lack enzymes to metabolically activate aflatoxins and expressed individual human P450 genes in budding yeast. We measured the frequencies of recombination, Rad51 foci formation, 7-methoxyresorufin O-demethylase activities, and the concentrations of carcinogen-associated DNA adducts in DNA repair proficient yeast expressing P450 polymorphisms after exposure to aflatoxin B1 (AFB1).We measured growth of rad4 rad51 cells expressing CYP1A2 polymorphisms while exposed to AFB1. We observed that there was significantly less AFB1-associated genotoxicity in yeast expressing CYP1A2 I386F, while yeast expressing CYP1A2 C406Y exhibited intermediate levels of genotoxicity compared to yeast expressing CYP1A2 D348N or wild type. We conclude that differences in carcinogen genotoxicity can be observed in yeast expressing different CYP1A2 alleles. This is the first report that carcinogen-associated P450 polymorphisms can be studied in yeast.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Fasullo M, Smith A, Egner P, Cera C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference