AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Fasullo M
  • References

Author: Fasullo M


References 30 references


No citations for this author.

Download References (.nbib)

  • Zeng L, et al. (2025) Checkpoint and recombination pathways independently suppress rates of spontaneous homology-directed chromosomal translocations in budding yeast. Front Genet 16:1479307 PMID:40255487
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiang T, et al. (2024) Amplified and distinctive genotoxicity of titanium dioxide nanoparticles in transformed yeast reporters with human cytochrome P450 (CYP) genes. J Hazard Mater 474: 134850. PMID:38850947
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dolan M, et al. (2023) High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (Bethesda) 13(12) PMID:37738679
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • St John N, et al. (2020) Genome Profiling for Aflatoxin B1 Resistance in Saccharomyces cerevisiae Reveals a Role for the CSM2/SHU Complex in Tolerance of Aflatoxin B1-Associated DNA Damage. G3 (Bethesda) 10(11):3929-3947 PMID:32994210
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derevensky M and Fasullo M (2018) DNA damaging agents trigger the expression of the HML silent mating type locus in Saccharomyces cerevisiae. Mutat Res Genet Toxicol Environ Mutagen 835:16-20 PMID:30249477
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • De La Rosa VY, et al. (2017) Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes. Toxicol Sci 160(1):111-120 PMID:28973557
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (2017) An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae. Environ Mol Mutagen 58(4):217-227 PMID:28436563
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Freedland J, et al. (2017) CYP1A1 I462V polymorphism is associated with reduced genotoxicity in yeast despite positive association with increased cancer risk. Mutat Res Genet Toxicol Environ Mutagen 815:35-43 PMID:28283091
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (2014) Activation of aflatoxin B1 by expression of human CYP1A2 polymorphisms in Saccharomyces cerevisiae. Mutat Res Genet Toxicol Environ Mutagen 761:18-26 PMID:24472830
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (2010) Aflatoxin B(1)-Associated DNA Adducts Stall S Phase and Stimulate Rad51 foci in Saccharomyces cerevisiae. J Nucleic Acids 2010:456487 PMID:21151658
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (2010) Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants. Nucleic Acids Res 38(4):1195-203 PMID:19965764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M and Sun M (2008) UV but not X rays stimulate homologous recombination between sister chromatids and homologs in a Saccharomyces cerevisiae mec1 (ATR) hypomorphic mutant. Mutat Res 648(1-2):73-81 PMID:18929581
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M and Sun M (2008) The Saccharomyces cerevisiae checkpoint genes RAD9, CHK1 and PDS1 are required for elevated homologous recombination in a mec1 (ATR) hypomorphic mutant. Cell Cycle 7(15):2418-26 PMID:18677117
    • SGD Paper
    • DOI full text
    • PubMed
  • Fasullo M, et al. (2008) Stimulation of sister chromatid exchanges and mutation by aflatoxin B1-DNA adducts in Saccharomyces cerevisiae requires MEC1 (ATR), RAD53, and DUN1. Mol Carcinog 47(8):608-15 PMID:18228255
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sun M and Fasullo M (2007) Activation of the budding yeast securin Pds1 but not Rad53 correlates with double-strand break-associated G2/M cell cycle arrest in a mec1 hypomorphic mutant. Cell Cycle 6(15):1896-902 PMID:17671432
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • DeMase D, et al. (2005) The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways. DNA Repair (Amst) 4(1):59-69 PMID:15533838
    • SGD Paper
    • DOI full text
    • PubMed
  • Fasullo M, et al. (2005) Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. DNA Repair (Amst) 4(11):1240-51 PMID:16039914
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (2005) Enhanced stimulation of chromosomal translocations and sister chromatid exchanges by either HO-induced double-strand breaks or ionizing radiation in Saccharomyces cerevisiae yku70 mutants. Mutat Res 578(1-2):158-69 PMID:15990123
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nag DK, et al. (2005) Inverted repeat-stimulated sister-chromatid exchange events are RAD1-independent but reduced in a msh2 mutant. Nucleic Acids Res 33(16):5243-9 PMID:16166656
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (2004) Enhanced stimulation of chromosomal translocations by radiomimetic DNA damaging agents and camptothecin in Saccharomyces cerevisiae rad9 checkpoint mutants. Mutat Res 547(1-2):123-32 PMID:15013706
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keller-Seitz MU, et al. (2004) Transcriptional response of yeast to aflatoxin B1: recombinational repair involving RAD51 and RAD1. Mol Biol Cell 15(9):4321-36 PMID:15215318
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dong Z and Fasullo M (2003) Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res 31(10):2576-85 PMID:12736307
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (2001) Saccharomyces cerevisiae rad51 mutants are defective in DNA damage-associated sister chromatid exchanges but exhibit increased rates of homology-directed translocations. Genetics 158(3):959-72 PMID:11454747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barrington RA, et al. (1999) A role for RAD51 in the generation of immunoglobulin gene diversity in rabbits. J Immunol 162(2):911-9 PMID:9916715
    • SGD Paper
    • PMC full text
    • PubMed
  • Fasullo M, et al. (1999) Expression of Saccharomyces cerevisiae MATa and MAT alpha enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates. Mutat Res 433(1):33-44 PMID:10047777
    • SGD Paper
    • DOI full text
    • PubMed
  • Fasullo M, et al. (1999) Radiosensitive and mitotic recombination phenotypes of the Saccharomyces cerevisiae dun1 mutant defective in DNA damage-inducible gene expression. Genetics 152(3):909-19 PMID:10388811
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasullo M, et al. (1998) The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 18(3):1190-200 PMID:9488434
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sengstag C, et al. (1996) Genotoxicity of aflatoxin B1: evidence for a recombination-mediated mechanism in Saccharomyces cerevisiae. Cancer Res 56(23):5457-65 PMID:8968101
    • SGD Paper
    • PMC full text
    • PubMed
  • Fasullo M and Dave P (1994) Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae. Mol Gen Genet 243(1):63-70 PMID:8190072
    • SGD Paper
    • DOI full text
    • PubMed
  • Fasullo M, et al. (1994) DNA-damaging agents stimulate the formation of directed reciprocal translocations in Saccharomyces cerevisiae. Mutat Res 314(2):121-33 PMID:7510362
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top