Reference: Celton M, et al. (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14(4):366-79

Reference Help

Abstract


Controlling the amounts of redox cofactors to manipulate metabolic fluxes is emerging as a useful approach to optimizing byproduct yields in yeast biotechnological processes. Redox cofactors are extensively interconnected metabolites, so predicting metabolite patterns is challenging and requires in-depth knowledge of how the metabolic network responds to a redox perturbation. Our aim was to analyze comprehensively the metabolic consequences of increased cytosolic NADPH oxidation during yeast fermentation. Using a genetic device based on the overexpression of a modified 2,3-butanediol dehydrogenase catalyzing the NADPH-dependent reduction of acetoin into 2,3-butanediol, we increased the NADPH demand to between 8 and 40-fold the anabolic demand. We developed (i) a dedicated constraint-based model of yeast fermentation and (ii) a constraint-based modeling method based on the dynamical analysis of mass distribution to quantify the in vivo contribution of pathways producing NADPH to the maintenance of redox homeostasis. We report that yeast responds to NADPH oxidation through a gradual increase in the flux through the PP and acetate pathways, providing 80% and 20% of the NADPH demand, respectively. However, for the highest NADPH demand, the model reveals a saturation of the PP pathway and predicts an exchange between NADH and NADPH in the cytosol that may be mediated by the glycerol-DHA futile cycle. We also reveal the contribution of mitochondrial shuttles, resulting in a net production of NADH in the cytosol, to fine-tune the NADH/NAD(+) balance. This systems level study helps elucidate the physiological adaptation of yeast to NADPH perturbation. Our findings emphasize the robustness of yeast to alterations in NADPH metabolism and highlight the role of the glycerol-DHA cycle as a redox valve, providing additional NADPH from NADH under conditions of very high demand.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference