Reference: Munakata N and Klionsky DJ (2010) "Autophagy suite": Atg9 cycling in the cytoplasm to vacuole targeting pathway. Autophagy 6(6):679-85

Reference Help

Abstract


Macroautophagy continues to gather increasing attention because it is connected with a wide range of human pathophysiologies, developmental processes and life span extension. It is also an interesting process from a basic cellular biology standpoint, as it involves dynamic membrane rearrangements and multiple protein-protein interactions. Although macroautophagy can be nonspecific, there are many examples of selective sequestration including pexophagy, mitophagy and the cytoplasm to vacuole targeting (Cvt) pathway. At present, the Cvt pathway is unique in that it is the only example of a biosynthetic use of macroautophagy. Most of the autophagy-related (Atg) proteins are involved in the Cvt pathway, and various types of analyses have placed these proteins at particular stages of the process. For example, Atg9 is the only characterized transmembrane protein that is absolutely required for Cvt vesicle formation, and it is proposed to carry membrane from peripheral donor sites to the phagophore assembly site where the vesicle forms. Additional proteins, including Atg11, Atg23 and Atg27 are involved in this anterograde movement, whereas Atg1-Atg13 and Atg2-Atg18 are required for the retrograde return to the peripheral sites. Even when we illustrate our understanding of these events in a schematic model, however, they are by necessity flat two-dimensional representations, lacking movement and sound. Yet the cell is a living entity that is not well served by this sole method of information display. Accordingly, we decided to present the Cvt pathway as a vibrant, dynamic process by combining science, music and illustration.

Reference Type
Journal Article
Authors
Munakata N, Klionsky DJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference