Reference: Kivioja T, et al. (2002) Assigning probes into a small number of pools separable by electrophoresis. Bioinformatics 18 Suppl 1:S199-206

Reference Help

Abstract


Motivation: Measuring transcriptional expression levels (transcriptional profiling) has become one of the most important methods in functional genomics. Still, new measuring methods are needed to obtain more reliable, quantitative data about transcription on a genomic scale. In this paper we concentrate on certain computational optimization problems arising in the design of one such novel method. From a computational point of view the key feature of the new method is that the hybridized probes are distinguished from each other based on their different size. Therefore the probes have to be assigned into pools such that the probes in the same pool have unique sizes different enough from each other. Identification of expressed RNA is given by probe pool and probe size while quantification is given by the label of the probe, e.g. fluorescence intensity.

Results: We show how to computationally find the probes and assign them into pools for a whole genome such that (i) each gene has a specific probe suitable for amplification and hybridization, and (ii) the expression level measurement can be done in a minimal number of pools separable by electrophoresis in order to minimize the total experiment cost of the measurement. Our main result is a polynomial-time approximation algorithm for assigning the probes into pools. We demonstrate the feasibility of the procedure by selecting probes for the yeast genome and assigning them into less than 100 pools. The probe sequences and their assignment into pools are available for academic research on request from the authors.

Reference Type
Comparative Study | Evaluation Study | Journal Article | Validation Study
Authors
Kivioja T, Arvas M, Kataja K, Penttilä M, Söderlund H, Ukkonen E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference