Reference: Xu TJ, et al. (2005) [Continuous ethanol fermentation using self-flocculating yeast strain and bioreactor system composed of multi-stage tanks in series]. Sheng Wu Gong Cheng Xue Bao 21(1):113-7

Reference Help

Abstract


A continuous ethanol fermentation system composed of four-stage tank fermentors in series and with a total working volume of 4000 mL was established. The first fermentor was designated as the seed fermentor and the others for ethanol fermentation. A self-flocculating yeast strain developed by protoplast fusion of Saccharomyces cerevisiae and Schizosaccharomyces pombe was applied. Two-stage corn powder enzymatic hydrolyzate containing reducing sugar 100 g/L, together with 2.0 g/L (NH4)2HPO4 and KH2PO4, was used as yeast seed culture medium and fed into the seed fermentor at the dilution rate of 0.017h (-1). Meanwhile, the hydrolyzate containing reducing sugar 220 g/L, added with 1.5 g/L (NH4)2HPO4 and 2.5 g/L KH2PO4, was used as ethanol fermentation substrate and fed into the second fermentor at the dilution rates of 0.017, 0.025, 0.033, 0.040 and 0.050 h(-1) (based on the total working volume of the three fermentors), respectively. The chemostat states on which all of the monitoring parameters, including residual sugar, ethanol and yeast cell biomass concentrations, were maintained relatively constant were observed for seed cultivation and ethanol fermentations when the fermentation system was operated at the dilution rates of 0.017, 0.025, 0.033 and 0.050 h(-1). Yeast cells were observed being partly immobilized because significant yeast cell biomass concentration differences between the broth out of and inside the fermentors were detected. Moreover, the oscillations of residual sugar, ethanol and yeast cell biomass concentrations were observed when the fermentation system was operated at the dilution rate of 0.040 h(-1). The broth containing more than 12% (V/V) ethanol and less than 0.11% (W/V) residual reducing sugar and 0.35% (W/V) residual total sugar was produced when the dilution rate was controlled at no more than 0.033 h(-1). The ethanol productivity was calculated to be 3.32(g x L(-1) x h(-1)) for the dilution rate of 0.033 h(-1), which increased nearly 100% compared with that for conventional ethanol fermentation technologies using freely suspended yeast cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Xu TJ, Zhao XQ, Zhou YC, Bai FW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference