AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Bai FW
  • References

Author: Bai FW


References 51 references


No citations for this author.

Download References (.nbib)

  • Li XY, et al. (2025) Membrane transport engineering for efficient yeast biomanufacturing. Bioresour Technol 418:131890 PMID:39644936
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang WB, et al. (2025) Engineering Chromatin Regulation of Xylose Utilization in Budding Yeast Saccharomyces cerevisiae for Efficient Bioconversion. ACS Synth Biol 14(3):794-803 PMID:40063354
    • SGD Paper
    • DOI full text
    • PubMed
  • Huang XY, et al. (2023) Developing high-dimensional machine learning models to improve generalization ability and overcome data insufficiency for mixed sugar fermentation simulation. Bioresour Technol 385:129375 PMID:37352987
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang X, et al. (2022) Benchmarking of long-read sequencing, assemblers and polishers for yeast genome. Brief Bioinform 23(3) PMID:35511110
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang X, et al. (2021) Omics analysis reveals mechanism underlying metabolic oscillation during continuous very-high-gravity ethanol fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 118(8):2990-3001 PMID:33934328
    • SGD Paper
    • DOI full text
    • PubMed
  • Li J, et al. (2020) Improved cellulase production in recombinant Saccharomyces cerevisiae by disrupting the cell wall protein-encoding gene CWP2. J Biosci Bioeng 129(2):165-171 PMID:31537451
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu CG, et al. (2020) Intracellular Redox Perturbation in Saccharomyces cerevisiae Improved Furfural Tolerance and Enhanced Cellulosic Bioethanol Production. Front Bioeng Biotechnol 8:615 PMID:32656198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu CG, et al. (2019) Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol Adv 37(3):491-504 PMID:30849432
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang MM, et al. (2019) Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. Prog Mol Subcell Biol 58:61-83 PMID:30911889
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang MM, et al. (2019) Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnol Biofuels 12:116 PMID:31168321
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng C, et al. (2018) Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. Biotechnol Biofuels 11:28 PMID:29441126
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu CG, et al. (2018) Computer Simulation Elucidates Yeast Flocculation and Sedimentation for Efficient Industrial Fermentation. Biotechnol J 13(5):e1700697 PMID:29328545
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiong L, et al. (2018) Condition-specific promoter activities in Saccharomyces cerevisiae. Microb Cell Fact 17(1):58 PMID:29631591
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu JR, et al. (2018) Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01. Protein Pept Lett 25(2):202-207 PMID:29359658
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu JR, et al. (2018) Genome Sequence of the Self-Flocculating Strain Saccharomyces cerevisiae SPSC01. Genome Announc 6(20) PMID:29773621
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu CG, et al. (2016) Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast. Sci Rep 6:25763 PMID:27161047
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu CG, et al. (2016) Corrigendum: Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast. Sci Rep 6:30995 PMID:27558935
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang MM, et al. (2015) Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnol J 10(12):1903-11 PMID:26479519
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu CG, et al. (2013) Global gene expression analysis of Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity conditions. Biotechnol J 8(11):1332-40 PMID:23625881
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu CG, et al. (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31(2):257-65 PMID:23178703
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang L, et al. (2013) Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol Biofuels 6(1):133 PMID:24041271
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue C, et al. (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31(8):1575-84 PMID:23993946
    • SGD Paper
    • DOI full text
    • PubMed
  • Zuo Q, et al. (2013) Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes. Biochem Biophys Res Commun 440(2):241-4 PMID:24051089
    • SGD Paper
    • DOI full text
    • PubMed
  • He LY, et al. (2012) Identification and functional study of a new FLO10-derivative gene from the industrial flocculating yeast SPSC01. J Ind Microbiol Biotechnol 39(8):1135-40 PMID:22466447
    • SGD Paper
    • DOI full text
    • PubMed
  • Li Q, et al. (2012) Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng 14(1):1-8 PMID:22178744
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu CG, et al. (2012) Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions. Biotechnol Biofuels 5(1):61 PMID:22917193
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhao XQ and Bai FW (2012) Zinc and yeast stress tolerance: micronutrient plays a big role. J Biotechnol 158(4):176-83 PMID:21763361
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu CG, et al. (2011) Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation. J Biotechnol 153(1-2):42-7 PMID:21419814
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu CG, et al. (2011) Ageing vessel configuration for continuous redox potential-controlled very-high-gravity fermentation. J Biosci Bioeng 111(1):61-6 PMID:20875953
    • SGD Paper
    • DOI full text
    • PubMed
  • Shen Y, et al. (2010) Application of oscillation for efficiency improvement of continuous ethanol fermentation with Saccharomyces cerevisiae under very-high-gravity conditions. Appl Microbiol Biotechnol 86(1):103-8 PMID:19898843
    • SGD Paper
    • DOI full text
    • PubMed
  • Xue C, et al. (2010) Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol Bioeng 105(5):935-44 PMID:19953674
    • SGD Paper
    • DOI full text
    • PubMed
  • Bai FW, et al. (2009) Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation. Biotechnol Bioeng 102(1):113-21 PMID:18949752
    • SGD Paper
    • DOI full text
    • PubMed
  • Li F, et al. (2009) An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast. Appl Microbiol Biotechnol 84(6):1079-86 PMID:19475405
    • SGD Paper
    • DOI full text
    • PubMed
  • Shen Y, et al. (2009) Metabolic flux and cell cycle analysis indicating new mechanism underlying process oscillation in continuous ethanol fermentation with Saccharomyces cerevisiae under VHG conditions. Biotechnol Adv 27(6):1118-1123 PMID:19463939
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhao XQ and Bai FW (2009) Yeast flocculation: New story in fuel ethanol production. Biotechnol Adv 27(6):849-856 PMID:19577627
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhao XQ and Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23-30 PMID:19446584
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhao XQ, et al. (2009) Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J Biotechnol 139(1):55-60 PMID:18938202
    • SGD Paper
    • DOI full text
    • PubMed
  • Ge XM and Bai FW (2006) Intrinsic kinetics of continuous growth and ethanol production of a flocculating fusant yeast strain SPSC01. J Biotechnol 124(2):363-72 PMID:16494960
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang B, et al. (2006) [Continuous ethanol fermentation coupled with recycling of yeast flocs]. Sheng Wu Gong Cheng Xue Bao 22(5):816-20 PMID:17037208
    • SGD Paper
    • DOI full text
    • PubMed
  • Ge XM, et al. (2005) Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol Bioeng 90(5):523-31 PMID:15816023
    • SGD Paper
    • DOI full text
    • PubMed
  • Hu CK, et al. (2005) [Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism]. Sheng Wu Gong Cheng Xue Bao 21(1):123-8 PMID:15859341
    • SGD Paper
    • PubMed
  • Hu CK, et al. (2005) Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao 21(5):809-13 PMID:16285526
    • SGD Paper
    • PubMed
  • Luo XP, et al. (2005) [Effects of dilution rates on the oscillatory behaviors of a very high gravity continuous ethanol fermentation system]. Sheng Wu Gong Cheng Xue Bao 21(4):604-8 PMID:16176100
    • SGD Paper
    • PubMed
  • Xu TJ, et al. (2005) [Continuous ethanol fermentation using self-flocculating yeast strain and bioreactor system composed of multi-stage tanks in series]. Sheng Wu Gong Cheng Xue Bao 21(1):113-7 PMID:15859339
    • SGD Paper
    • PubMed
  • Yan Z, et al. (2005) [Continuous ethanol fermentation using self-flocculating yeast in multi-stage suspended bioreactors coupled with directly recycling of waste distillage]. Sheng Wu Gong Cheng Xue Bao 21(4):628-32 PMID:16176104
    • SGD Paper
    • PubMed
  • Bai FW, et al. (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol 110(3):287-93 PMID:15163519
    • SGD Paper
    • DOI full text
    • PubMed
  • Bai FW, et al. (2004) Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system. Biotechnol Bioeng 88(5):558-66 PMID:15470717
    • SGD Paper
    • DOI full text
    • PubMed
  • Hu CK, et al. (2004) Influence of phospholipid fatty acid composition of plasma membrane on sensitivity of plasma membrane ATPase of a self-flocculating yeast to in vivo ethanol activation and its relationship to ethanol tolerance. Sheng Wu Gong Cheng Xue Bao 20(5):784-9 PMID:15974010
    • SGD Paper
    • PubMed
  • Wang Y, et al. (2004) Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnol Lett 26(11):885-90 PMID:15269535
    • SGD Paper
    • DOI full text
    • PubMed
  • Hu CK, et al. (2003) Enhancing ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae by Mg2+ via reduction in plasma membrane permeability. Biotechnol Lett 25(14):1191-4 PMID:12967011
    • SGD Paper
    • DOI full text
    • PubMed
  • Hu CK, et al. (2003) Enhancements in ethanol tolerance of a self-flocculating yeast by calcium ion through decrease in plasmalemma permeability. Sheng Wu Gong Cheng Xue Bao 19(6):715-9 PMID:15971585
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top