Reference: Fehrenbacher G, et al. (1978) Cell-cell recognition in Saccharomyces cerevisiae: regulation of mating-specific adhesion. J Bacteriol 134(3):893-901

Reference Help

Abstract


Mating-specific adhesion between haploid yeast cells of opposite mating type (a and alpha) was studied by using a quantitative agar plate assay. Washed a and alpha cells that had not previously been exposed to their respective opposite mating type ("naive" cells) adhered relatively weakly. In water, only 5 to 10% of the a cells stuck tightly enough to alpha cells to give rise subsequently to diploid clones on the assay plates. Under optimum conditions (pH 6 to 7, at least 0.1 M Nacl or 0.01 M Mg(2+)), there was about 20% adhesion. Nevertheless, this weak binding defined a mating type-specific interaction because, even under optimum conditions, the homologous interactions (a with a and alpha with alpha) yielded only 3 to 5% cohesion. In contrast to these results, washed cells that had been preincubated in the cell-free culture medium of their opposite mating type ("preconditioned" cells) adhered quite strongly. The degree of adhesion between preconditioned cells (40 to 50%) was essentially unaffected by extremes of ionic strength, pH, and temperature and by the absence of divalent cation. This strong interaction was also mating type specific since cohesion between preconditioned cells of like mating type was only about 5%. The increase in agglutinability was obtained if only the a cells were preconditioned and could be induced by highly purified preparations of natural or synthetically prepared alpha-factor, an oligopeptide pheromone released by the alpha cells. The appearance of increased adhesiveness was blocked by an inhibitor of RNA synthesis and by an inhibitor of protein synthesis, but not by an inhibitor of polysaccharide synthesis. Adhesion between preconditioned cells could be inhibited by pretreatment with functionally univalent succinylated concanavalin A or with extracts from preconditioned cells of the opposite mating type. These results confirm in a quantitative manner that the recognition between conjugating cells of S. cerevisiae is a developmentally regulated event that is under the control of the mating type locus.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Fehrenbacher G, Perry K, Thorner J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference