Reference: Wiedemann B and Boles E (2008) Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74(7):2043-50

Reference Help

Abstract


Bioethanol produced by microbial fermentations of plant biomass hydrolysates consisting of hexose and pentose mixtures is an excellent alternative to fossil transportation fuels. However, the yeast Saccharomyces cerevisiae, commonly used in bioethanol production, can utilize pentose sugars like l-arabinose or d-xylose only after heterologous expression of corresponding metabolic pathways from other organisms. Here we report the improvement of a bacterial l-arabinose utilization pathway consisting of l-arabinose isomerase from Bacillus subtilis and l-ribulokinase and l-ribulose-5-P 4-epimerase from Escherichia coli after expression of the corresponding genes in S. cerevisiae. l-Arabinose isomerase from B. subtilis turned out to be the limiting step for growth on l-arabinose as the sole carbon source. The corresponding enzyme could be effectively replaced by the enzyme from Bacillus licheniformis, leading to a considerably decreased lag phase. Subsequently, the codon usage of all the genes involved in the l-arabinose pathway was adapted to that of the highly expressed genes encoding glycolytic enzymes in S. cerevisiae. Yeast transformants expressing the codon-optimized genes showed strongly improved l-arabinose conversion rates. With this rational approach, the ethanol production rate from l-arabinose could be increased more than 2.5-fold from 0.014 g ethanol h(-1) (g dry weight)(-1) to 0.036 g ethanol h(-1) (g dry weight)(-1) and the ethanol yield could be increased from 0.24 g ethanol (g consumed l-arabinose)(-1) to 0.39 g ethanol (g consumed l-arabinose)(-1). These improvements make up a new starting point for the construction of more-efficient industrial l-arabinose-fermenting yeast strains by evolutionary engineering.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wiedemann B, Boles E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference