Reference: Ma P, et al. (1997) The lag phase rather than the exponential-growth phase on glucose is associated with a higher cAMP level in wild-type and cAPK-attenuated strains of the yeast Saccharomyces cerevisiae. Microbiology (Reading) 143 ( Pt 11):3451-3459

Reference Help

Abstract


In the yeast Saccharomyces cerevisiae several phenotypic properties controlled by cAMP-dependent protein kinase (cAPK) are indicative of high cAPK activity during growth on glucose and low activity during growth on non-fermentable carbon sources and in stationary phase. It has been a matter of debate whether the apparently higher activity of cAPK in cells growing on glucose is due to a higher cAMP level or to an alternative mechanism activating cAPK. The cAMP level during diauxic growth of yeast cells in cultures with different initial glucose levels and different initial cell densities has been reinvestigated and the previously reported twofold increase in cAMP during growth initiation has been confirmed. However, this increase was transient and entirely associated with the lag phase of growth. The initiation of exponential growth on glucose was associated with a decrease in the cAMP level and there was no correlation between this decrease in cAMP and the depletion of glucose in the medium. In mutants defective in feedback inhibition of cAMP synthesis, resuspension of exponential-phase glucose-grown cells in glucose medium caused an extended lag phase during which a huge, transient accumulation of cAMP occurred. The latter required the presence of glucose and nitrogen, but not phosphate or sulfate, and was not due to intracellular acidification, as shown by in vivo 31P-NMR spectroscopy. The initiation of exponential growth on glucose was also associated in this case with a decrease in cAMP rather than an increase. This behaviour was also observed in strains with attenuated catalytic subunit activity and lacking the regulatory subunit and even in strains without catalytic subunits of cAPK. This might indicate that other mechanisms are able to cause down-regulation of cAMP synthesis in a way mimicking feedback inhibition. Transfer of glucose-growing cells of wild-type or cAPK-attenuated strains to a nitrogen starvation medium resulted in an increase in the cAMP level rather than a decrease. The results indicate that the apparent changes in cAPK activity in vivo during diauxic growth on glucose and during nitrogen starvation cannot be explained on the basis of changes in the cAMP level.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ma P, Gon Alves T, Maretzek AN, Dias MCL, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference