Reference: Thevelein JM, et al. (1987) Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: the glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH. J Gen Microbiol 133(8):2197-205

Reference Help

Abstract


Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae is known to cause a rapid, transient increase in the cAMP level, which lasts for 1-2 min and induces a cAMP-dependent protein phosphorylation cascade. The glucose-induced cAMP signal cannot be explained solely on the basis of an increased ATP level. Transient membrane depolarization and transient intracellular acidification have been suggested as possible triggers for the cAMP peak. Addition of glucose to cells in which the plasma membrane had been depolarized still produced the increase in the cAMP level excluding membrane depolarization as the possible trigger. Using in vivo 31P NMR-spectroscopy we followed phosphate metabolism and the time course of the drop in the intracellular pH after addition of glucose with a time resolution of 15 s. Under aerobic conditions the initial pH and ATP level were high. On addition of glucose, they both showed a rapid, transient drop, which lasted for about 30 s. Under anaerobic conditions, the initial pH and ATP level were low and on addition of glucose they both increased relatively slowly compared to aerobic conditions. Several conditions were found in which the pH drop which occurs under aerobic conditions could be blocked completely without effect on the cAMP signal or without completely preventing it: addition of NH4Cl together with glucose at high extracellular pH and addition of a low concentration of glucose before a high concentration. Also, when glucose was added twice to the same cells no consistent relationship was observed between the pH drop and the cAMP peak. These results appear to exclude transient intracellular acidification as the trigger for the cAMP signal. Hence, we conclude that the effect of glucose cannot be explained on the basis of effects known to be caused by the membrane depolarizing compounds which cause increases in the cAMP level. A new, more specific kind of interaction appears to be involved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Thevelein JM, Beullens M, Honshoven F, Hoebeeck G, Detremerie K, Griewel B, den Hollander JA, Jans AW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference