Reference: Choi JY, et al. (2006) Macromolecular assemblies regulate nonvesicular phosphatidylserine traffic in yeast. Biochem Soc Trans 34(Pt 3):404-8

Reference Help

Abstract


PtdSer (phosphatidylserine) is synthesized in the endoplasmic reticulum and the related MAM (mitochondria-associated membrane), and transported to the PtdSer decarboxylases, Pds1p in the mitochondria, and Psd2p in the Golgi. Genetic and biochemical analyses of PtdSer transport are now revealing the role of specific protein and lipid assemblies on different organelles that regulate non-vesicular PtdSer transport. The transport of PtdSer from MAM to mitochondria is regulated by at least three genes: MET30 (encoding a ubiquitin ligase), MET4 (encoding a transcription factor), and one or more unknown genes whose transcription is regulated by MET4. MET30-dependent ubiquitination is required for the MAM to function as a competent donor membrane and for the mitochondria to function as a competent acceptor membrane. Non-vesicular transport of PtdSer to the locus of Psd2p is under the control of at least three genes, STT4 [encoding Stt4p (phosphatidylinositol 4-kinase)], PSTB2 (encoding the lipid-binding protein PstB2p) and PSD2 (encoding Psd2p). Stt4p is proposed to produce a pool of PtdIns4P that is necessary for lipid transport. PstB2p and Psd2p must be present on the acceptor membrane for PtdSer transport to occur. Psd2p contains a C2 (Ca(2+) and phospholipid binding sequence) domain that is required for lipid transport. Reconstitution studies with chemically defined donor membranes demonstrate that membrane domains rich in the anionic lipids, PtdSer, PtdIns4P and phosphatidic acid function as the most efficient donors of PtdSer to Psd2p. The emerging view is that macromolecular complexes dependent on protein-protein and protein-lipid interactions form between donor and acceptor membranes and serve to dock the compartments and facilitate phospholipid transport.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Review
Authors
Choi JY, Riekhof WR, Wu WI, Voelker DR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference