Riekhof WR, et al. (2014) An assembly of proteins and lipid domains regulates transport of phosphatidylserine to phosphatidylserine decarboxylase 2 in Saccharomyces cerevisiae. J Biol Chem 289(9):5809-19 PMID:24366873
Han GS, et al. (2006) The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 281(14):9210-8 PMID:16467296
Choi JY, et al. (2005) Phosphatidylserine decarboxylases as genetic and biochemical tools for studying phospholipid traffic. Anal Biochem 347(2):165-75 PMID:16310509
Wu WI and Voelker DR (2004) Reconstitution of phosphatidylserine transport from chemically defined donor membranes to phosphatidylserine decarboxylase 2 implicates specific lipid domains in the process. J Biol Chem 279(8):6635-42 PMID:14660568
Rontein D, et al. (2003) Mitochondrial phosphatidylserine decarboxylase from higher plants. Functional complementation in yeast, localization in plants, and overexpression in Arabidopsis. Plant Physiol 132(3):1678-87 PMID:12857846
Kitamura H, et al. (2002) The C2 domain of phosphatidylserine decarboxylase 2 is not required for catalysis but is essential for in vivo function. J Biol Chem 277(37):33720-6 PMID:12093819
Wu WI and Voelker DR (2002) Biochemistry and genetics of interorganelle aminoglycerophospholipid transport. Semin Cell Dev Biol 13(3):185-95 PMID:12137739
Rontein D, et al. (2001) Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem 276(38):35523-9 PMID:11461929
Storey MK, et al. (2001) A genetic screen for ethanolamine auxotrophs in Saccharomyces cerevisiae identifies a novel mutation in Mcd4p, a protein implicated in glycosylphosphatidylinositol anchor synthesis. Biochim Biophys Acta 1532(3):234-47 PMID:11470244
Wu WI and Voelker DR (2001) Characterization of phosphatidylserine transport to the locus of phosphatidylserine decarboxylase 2 in permeabilized yeast. J Biol Chem 276(10):7114-21 PMID:11104779
Wu WI, et al. (2000) A new gene involved in the transport-dependent metabolism of phosphatidylserine, PSTB2/PDR17, shares sequence similarity with the gene encoding the phosphatidylinositol/phosphatidylcholine transfer protein, SEC14. J Biol Chem 275(19):14446-56 PMID:10799527
Toke DA, et al. (1998) Isolation and characterization of the Saccharomyces cerevisiae DPP1 gene encoding diacylglycerol pyrophosphate phosphatase. J Biol Chem 273(6):3278-84 PMID:9452443
Toke DA, et al. (1998) Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+-independent phosphatidate phosphatase. J Biol Chem 273(23):14331-8 PMID:9603941
Trotter PJ, et al. (1998) A genetic screen for aminophospholipid transport mutants identifies the phosphatidylinositol 4-kinase, STT4p, as an essential component in phosphatidylserine metabolism. J Biol Chem 273(21):13189-96 PMID:9582361
Dillon DA, et al. (1996) The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem 271(48):30548-53 PMID:8940025
Wu WI, et al. (1996) Purification and characterization of diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae. J Biol Chem 271(4):1868-76 PMID:8567632
Quinlan JJ, et al. (1992) The 45- and 104-kDa forms of phosphatidate phosphatase from Saccharomyces cerevisiae are regulated differentially by phosphorylation via cAMP-dependent protein kinase. J Biol Chem 267(25):18013-20 PMID:1517235