Reference: Dudás A, et al. (2003) The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyces cerevisiae rad52 mutant cells. Yeast 20(5):389-96

Reference Help

Abstract


The Saccharomyces cerevisiae rad52 mutants are sensitive to many DNA damaging agents, mainly to those that induce DNA double-strand breaks (DSBs). In the yeast, DSBs are repaired primarily by homologous recombination (HR). Since almost all HR events are significantly reduced in the rad52 mutant cells, the Rad52 protein is believed to be a key component of HR in S. cerevisiae. Similarly to the S. cerevisiae Rad52 protein, RecA is the main HR protein in Escherichia coli. To address the question of whether the E. coli RecA protein can rescue HR defective phenotype of the rad52 mutants of S. cerevisiae, the recA gene was introduced into the wild-type and rad52 mutant cells. Cell survival and DSBs induction and repair were studied in the RecA-expressing wild-type and rad52 mutant cells after exposure to ionizing radiation (IR) and methyl methanesulphonate (MMS). Here, we show that expression of the E. coli RecA protein partially complemented sensitivity and fully complemented DSB repair defect of the rad52 mutant cells after exposure to IR and MMS. We suggest that in the absence of Rad52, when all endogenous HR mechanisms are knocked out in S. cerevisiae, the heterologous E. coli RecA protein itself presumably takes over the broken DNA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Dudás A, Marková E, Vlasáková D, Kolman A, Bartosová Z, Brozmanová J, Chovanec M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference