Reference: Seto-Young D, et al. (1996) Genetic probing of the first and second transmembrane helices of the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. J Biol Chem 271(1):581-7

Reference Help

Abstract


Structural features of the putative helical hairpin region comprising transmembrane segments 1 (TM1) and 2 (TM2) of the yeast plasma membrane H(+)-ATPase were probed by site-directed mutagenesis. The importance of phenylalanine residues Phe-116, Phe-119, Phe-120, Phe-126, Phe-144, Phe-159, and Phe-163 was explored by alanine replacement mutagenesis. It was found that substitutions at all positions, except Phe-120 and Phe-144, produced viable enzymes, although a range of cellular growth phenotypes were observed like hygromycin B resistance and low pH sensitivity, which are linked to in vivo action of the H(+)-ATPase. Lethal positions Phe-120 and Phe-144, could be replaced with tryptophan to produce viable enzyme, although the F144W mutant was highly perturbed. ATP hydrolysis measurements showed that Km was not significantly altered for most mutant enzymes, whereas Vmax was moderately reduced with two mutants, F144W and F163A, showing less than 50% of the normal activity. Double Phe-->Ala mutations in TM1 and TM2 were constructed to examine whether such substitutions would result in a higher degree of enzyme destabilization. Mutant F116A/F119A was viable and gave a normal phenotype, while F159A/F163A was not viable. Other double mutants, F116A/F159A and F119AF/159A, which are predicted to lie juxtaposed on TM1 and TM2, produced non-functional enzymes. However, a viable F119V/F159A mutant was isolated and showed hygromycin B resistance. These results suggest that double mutations eliminating 2 phenylalanine residues strongly destabilize the enzyme. A putative proline kink at Gly-122/Pro-123 in TM1 is not essential for enzyme action since these residues could be variously substituted (G122A or G122N; P123A, P123G, or P123F) producing viable enzymes with moderate effects on in vitro ATP hydrolysis or proton transport. However, several substitutions produced prominent growth phenotypes, suggesting that local perturbations were occurring. The location of Pro-123 is important because Gly-122 and Pro-123 could not be exchanged. In addition, a double Pro-Pro created by a G122P mutation was lethal, suggesting that maintenance of an alpha-helical structure is important. Other mutations in the hairpin, including modification of a buried charged residue, E129A, were not critical for enzyme action. These data are consistent with the view that the helical hairpin comprising TM1 and TM2 has important structural determinants that contribute to its overall stability and flexibility.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Seto-Young D, Hall MJ, Na S, Haber JE, Perlin DS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference