Reference: Struhl K (1986) Yeast HIS3 expression in Escherichia coli depends upon fortuitous homology between eukaryotic and prokaryotic promoter elements. J Mol Biol 191(2):221-9

Reference Help

Abstract


The yeast imidazoleglycerolphosphate dehydratase gene HIS3, when introduced into Escherichia coli, is transcribed and translated with sufficient fidelity to produce functional enzyme. The following lines of evidence indicate that E. coli RNA polymerase recognizes a particular region of HIS3 DNA as a promoter sequence. First, this promoter contains nucleotide sequences that resemble the canonical prokaryotic promoter elements, the -10 and -35 regions. Second, HIS3 transcription in vitro by E. coli RNA polymerase is initiated at the predicted site downstream from the conserved sequences. Third, deletion mutations that successively encroach upon the 5' end of the HIS3 gene indicate that the promoter is necessary and sufficient for expression in E. coli. Fourth, a single base-pair change that behaves as an "up-promoter" mutation alters the -35 region such that it becomes identical with the consensus sequence. Because the -10 region of this promoter coincides with the TATA promoter element that is necessary for expression in yeast cells, it is possible directly to compare prokaryotic and eukaryotic promoter function. Analysis of 51 deletion and substitution mutations indicates that the patterns of mutant phenotypes are quite different for each organism. Therefore, although prokaryotic -10 regions are similar in sequence to eukaryotic TATA elements and although the same his3 region serves both functions, it appears that this represents an evolutionary coincidence whose current functional basis is minimal. The evolutionary significance of the homology between prokaryotic and eukaryotic promoter elements is discussed.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Struhl K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference