Reference: Påhlman IL, et al. (2001) Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Yeast 18(7):611-20

Reference Help

Abstract


Cytosolic redox balance has to be maintained in order to allow an enduring cellular metabolism. In other words, NADH generated in the cytosol has to be re-oxidized back to NAD(+). Aerobically this can be done by respiratory oxidation of cytosolic NADH. However, NADH is unable to cross the mitochondrial inner membrane and mechanisms are required for conveying cytosolic NADH to the mitochondrial electron transport chain. At least two such systems have proved to be functional in S. cerevisiae, the external NADH dehydrogenase (Luttik et al., 1998; Small and McAlister-Henn, 1998) and the G3P shuttle (Larsson et al., 1998). The aim of this investigation was to study the regulation and performance of these two systems in a wild-type strain of S. cerevisiae using aerobic glucose- and nitrogen-limited chemostat cultures. The rate of cytosolic NADH formation was calculated and as expected there was a continuous increase with increasing dilution rate. However, measurements of enzyme activities and respiratory activity on isolated mitochondria revealed a diminishing capacity at elevated dilution rates for both the external NADH dehydrogenase and the G3P shuttle. This suggests that adjustment of in vivo activities of these systems to proper levels is not achieved by changes in amount of protein but rather by, for example, activation/inhibition of existing enzymes. Adenine nucleotides are well-known allosteric regulators and both the external NADH and the G3P shuttle were sensitive to inhibition by ATP. The most severe inhibition was probably on the G3P shuttle, since one of its member proteins, Gpdp, turned out to be exceptionally sensitive to ATP. The external NADH dehydrogenase is suggested as the main system employed for oxidation of cytosolic NADH. The G3P shuttle is proposed to be of some importance at low growth rates and perhaps its real significance is only expressed during starvation conditions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Påhlman IL, Gustafsson L, Rigoulet M, Larsson C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference