Ferndahl C, et al. (2010) Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microb Cell Fact 9:47 PMID:20565740
Bonander N, et al. (2008) Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. BMC Genomics 9:365 PMID:18671860
Bosch D, et al. (2008) Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. FEMS Yeast Res 8(1):10-25 PMID:18042231
Albers E, et al. (2007) Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae. Appl Environ Microbiol 73(15):4839-48 PMID:17545328
Brandberg T, et al. (2007) Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention. Biotechnol Bioeng 98(1):80-90 PMID:17335066
Bonander N, et al. (2005) Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci 14(7):1729-40 PMID:15987902
Henricsson C, et al. (2005) Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations. Appl Environ Microbiol 71(10):6185-92 PMID:16204537
Thomsson E, et al. (2005) Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures. Appl Environ Microbiol 71(6):3007-13 PMID:15932996
Brandberg T, et al. (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98(2):122-5 PMID:16233676
Elbing K, et al. (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70(9):5323-30 PMID:15345416
Elbing K, et al. (2004) Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae. Eur J Biochem 271(23-24):4855-64 PMID:15606773
Krantz M, et al. (2004) Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot Cell 3(6):1381-90 PMID:15590813
Rigoulet M, et al. (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 256-257(1-2):73-81 PMID:14977171
Valadi A, et al. (2004) Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 279(38):39677-85 PMID:15210723
Valadi H, et al. (2004) NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet 45(2):90-5 PMID:14652693
Albers E, et al. (2003) Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem 278(12):10264-72 PMID:12525494
Thomsson E, et al. (2003) Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae. Appl Environ Microbiol 69(6):3251-7 PMID:12788723
Avéret N, et al. (2002) NADH is specifically channeled through the mitochondrial porin channel in Saccharomyces cerevisiae. J Bioenerg Biomembr 34(6):499-506 PMID:12678441
Påhlman IL, et al. (2002) Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. J Biol Chem 277(31):27991-5 PMID:12032156
Aguilaniu H, et al. (2001) Protein oxidation in G0 cells of Saccharomyces cerevisiae depends on the state rather than rate of respiration and is enhanced in pos9 but not yap1 mutants. J Biol Chem 276(38):35396-404 PMID:11431467
Nilsson A, et al. (2001) Fermentative capacity after cold storage of baker's yeast is dependent on the initial physiological state but not correlated to the levels of glycolytic enzymes. Int J Food Microbiol 71(2-3):111-24 PMID:11789928
Nilsson A, et al. (2001) The catabolic capacity of Saccharomyces cerevisiae is preserved to a higher extent during carbon compared to nitrogen starvation. Yeast 18(15):1371-81 PMID:11746599
Valadi H, et al. (2001) An improved gas distribution system for anaerobic screening of multiple microbial cultures. J Microbiol Methods 47(1):51-7 PMID:11566227
Bonini BM, et al. (2000) Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350 Pt 1(Pt 1):261-8 PMID:10926852
Taherzadeh MJ, et al. (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87(2):169-74 PMID:16232445
Tamás MJ, et al. (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31(4):1087-104 PMID:10096077
Larsson C, et al. (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14(4):347-57 PMID:9559543
Valadi H, et al. (1998) Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50(4):434-9 PMID:9830094
Larsson C, et al. (1997) Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 179(23):7243-50 PMID:9393686
Danielsson A, et al. (1996) A genetic analysis of the role of calcineurin and calmodulin in Ca++-dependent improvement of NaCl tolerance of Saccharomyces cerevisiae. Curr Genet 30(6):476-84 PMID:8939808