Reference: Beullens M, et al. (1988)
Reference Help
Abstract
When glucose is added to cells of the yeast Saccharomyces cerevisiae grown on non-fermentable carbon sources, a cAMP signal is induced which triggers a protein phosphorylation cascade. Addition of glucose or fructose to cells of a phosphoglucose isomerase mutant also induced the cAMP signal indicating that metabolization of the sugar beyond the sugar phosphate step is not necessary. Glucose 6-phosphate might stimulate the triggering reaction since induction with fructose shows a significant delay. Experiments with double and triple mutants in hexokinase 1, hexokinase 2 or glucokinase indicated that the presence of one of the three kinases was both necessary and enough for induction of the cAMP signal by glucose and the presence of one of the two hexokinases necessary and enough for induction by fructose. The product of the kinase reaction itself however does not appear to be the trigger of the reaction: when the increase in the level of glucose 6-phosphate and fructose 6-phosphate was measured as a function of time after addition of different glucose concentrations, no correlation was observed with the increase in the cAMP level. From the dependence of the cAMP increase on the external concentration of glucose, a rough estimate was obtained of the Km of the triggering reaction: about 25 mM. This value clearly fits with the Km of the low-affinity glucose carrier (about 20 mM) and differs by at least an order of magnitude from the Km values of the high-affinity glucose carrier and the three kinases. The present results situate the primary triggering reaction at the level of transport-associated phosphorylation. The main (= low-affinity) glucose carrier appears to be the receptor while association of the corresponding kinase is needed for induction of the signal. Since it is known that the presence of the kinases influences the characteristics of sugar transport, no definite conclusion can be given on whether the necessity of the kinases reflects the need for a certain type of transport or the need for phosphorylation of the sugar. The increase in the level of fructose 1,6-bisphosphate, on the other hand, correlated very well with the cAMP increase. However, it clearly lagged behind the cAMP increase, confirming the previously suggested importance of the cAMP signal for the stimulation of glycolytic flux at the level of phosphofructokinase 1.(ABSTRACT TRUNCATED AT 400 WORDS)
- Reference Type
-
Journal Article |
Research Support, Non-U.S. Gov't
- Authors
-
Beullens M,
Mbonyi K,
Geerts L,
Gladines D,
Detremerie K,
Jans AW,
Thevelein JM
... Show all
Show fewer
Gene Ontology Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page
scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header
to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID |
Analyze ID |
Gene/Complex |
Systematic Name/Complex Accession |
Qualifier |
Gene Ontology Term ID |
Gene Ontology Term |
Aspect |
Annotation Extension |
Evidence |
Method |
Source |
Assigned On |
Reference |
Phenotype Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page
scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header
to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i"
buttons located within a cell for an annotation to view further details.
Evidence ID |
Analyze ID |
Gene |
Gene Systematic Name |
Phenotype |
Experiment Type |
Experiment Type Category |
Mutant Information |
Strain Background |
Chemical |
Details |
Reference |
Disease Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page
scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header
to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID |
Analyze ID |
Gene |
Gene Systematic Name |
Disease Ontology Term |
Disease Ontology Term ID |
Qualifier |
Evidence |
Method |
Source |
Assigned On |
|
Reference |
Regulation Annotations
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the
page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column
header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box
(for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to
further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID |
Analyze ID |
Regulator |
Regulator Systematic Name |
Target |
Target Systematic Name |
Direction |
Regulation of |
Happens During |
Regulator Type |
Direction |
Regulation Of |
Happens During |
Method |
Evidence |
Strain Background |
Reference |
Post-translational Modifications
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to
sort by that column; filter the table using the "Filter" box at the top of the table.
|
|
|
|
Site |
|
Modification |
Modifier |
Source |
Reference |
Interaction Annotations
Genetic Interactions
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column
header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small
"i" buttons located within a cell for an annotation to view further details about experiment type and any other
genes involved in the interaction.
Evidence ID |
Analyze ID |
|
Interactor |
Interactor Systematic Name |
Interactor |
Interactor Systematic Name |
Allele |
Assay |
Annotation |
Action |
Phenotype |
SGA score |
P-value |
Source |
Reference |
Note |
Physical Interactions
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column
header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small
"i" buttons located within a cell for an annotation to view further details about experiment type and any other
genes involved in the interaction.
Evidence ID |
Analyze ID |
|
Interactor |
Interactor Systematic Name |
Interactor |
Interactor Systematic Name |
Assay |
Annotation |
Action |
Modification |
Source |
Reference |
Note |
Functional Complementation Annotations
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to
sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID |
Locus ID |
Gene |
Species |
Gene ID |
Strain background |
Direction |
Details |
Source |
Reference |