Reference: Galli A and Schiestl RH (1998) Effect of Salmonella assay negative and positive carcinogens on intrachromosomal recombination in S-phase arrested yeast cells. Mutat Res 419(1-3):53-68

Reference Help

Abstract


A wide variety of carcinogens including Ames assay (Salmonella) positive as well as Salmonella negative carcinogens induce intrachromosomal recombination (DEL recombination) in Saccharomyces cerevisiae. We have shown previously that the Salmonella positive carcinogens, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS) and 4-Nitroquinoline-N-oxide (4-NQO, and the Salmonella negative carcinogens, safrole, benzene, thiourea, carbon tetrachloride, and urethane, induced DEL recombination in growing, in G1 and in G2 arrested yeast cells. Since we found interesting differences in response between dividing and arrested cells, we wanted to find out whether these differences were due to the difference between cell division versus cell cycle arrest or to any particular cell cycle phase. In the present paper we incubated cells in the presence of hydroxyurea (HU) for cell cycle arrest in S-phase and exposed them to the above carcinogens, and plated them onto selective medium to determine DEL and interchromosomal recombination (ICR) frequencies. It was surprising that carbon tetrachloride had no effect on DEL recombination or ICR in HU treated cells even though it induced DEL recombination in G1 and G2 arrested as well as dividing cells. Further experiments are in agreement with the interpretation that carbon tetrachloride was responsible for prematurely pushing G1 cells into S-phase. The consequence of this may be replication on a damaged template which may be responsible for the action of carbon tetrachloride. EMS, MMS, 4-NQO and urethane were more recombinagenic in HU treated cells than in previous experiments with G2 arrested cells. None of the carcinogens appeared to be activated by S9 for either DEL recombination or ICR induction. Furthermore, we only detect cytochrome P-450 in dividing but not in arrested cells, arguing that possible differences in the ability to metabolize the compounds does not explain the observed differences for DEL recombination induction in the different cell cycle phases. We discuss these data in terms of the mechanism of induced DEL recombination and the possible biological activities of these carcinogens.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Galli A, Schiestl RH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference