AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Schiestl RH
  • References

Author: Schiestl RH


References 53 references


No citations for this author.

Download References (.nbib)

  • Galli A, et al. (2015) Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae. Mutagenesis 30(6):841-9 PMID:26122113
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sobol Z and Schiestl RH (2012) Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity. Environ Mol Mutagen 53(2):94-100 PMID:22020802
    • SGD Paper
    • DOI full text
    • PubMed
  • Chan CY, et al. (2011) Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae. Mol Genet Genomics 285(6):471-84 PMID:21512733
    • SGD Paper
    • DOI full text
    • PubMed
  • Friedl AA, et al. (2010) Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae. Mol Genet Genomics 284(4):231-42 PMID:20677012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hafer K, et al. (2010) Cell cycle dependence of ionizing radiation-induced DNA deletions and antioxidant radioprotection in Saccharomyces cerevisiae. Radiat Res 173(6):802-8 PMID:20518659
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chan CY and Schiestl RH (2009) Rad1, rad10 and rad52 mutations reduce the increase of microhomology length during radiation-induced microhomology-mediated illegitimate recombination in saccharomyces cerevisiae. Radiat Res 172(2):141-51 PMID:19630519
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Galli A, et al. (2009) The pol3-t hyperrecombination phenotype and DNA damage-induced recombination in Saccharomyces cerevisiae is RAD50 dependent. J Biomed Biotechnol 2009:312710 PMID:19834566
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reliene R, et al. (2009) N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat Res 665(1-2):37-43 PMID:19427509
    • SGD Paper
    • DOI full text
    • PubMed
  • Scuric Z, et al. (2009) Ionizing radiation induces microhomology-mediated end joining in trans in yeast and mammalian cells. Radiat Res 171(4):454-63 PMID:19397446
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chan CY, et al. (2008) Pol3 is involved in nonhomologous end-joining in Saccharomyces cerevisiae. DNA Repair (Amst) 7(9):1531-41 PMID:18606574
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodriguez CE, et al. (2008) 9,10-Phenanthrenequinone induces DNA deletions and forward mutations via oxidative mechanisms in the yeast Saccharomyces cerevisiae. Toxicol In Vitro 22(2):296-300 PMID:17959352
    • SGD Paper
    • DOI full text
    • PubMed
  • Chan CY, et al. (2007) Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res 35(15):5051-9 PMID:17652322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gietz RD and Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):1-4 PMID:17401330
    • SGD Paper
    • DOI full text
    • PubMed
  • Gietz RD and Schiestl RH (2007) Microtiter plate transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):5-8 PMID:17401331
    • SGD Paper
    • DOI full text
    • PubMed
  • Gietz RD and Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31-4 PMID:17401334
    • SGD Paper
    • DOI full text
    • PubMed
  • Gietz RD and Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):35-7 PMID:17401335
    • SGD Paper
    • DOI full text
    • PubMed
  • Gietz RD and Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):38-41 PMID:17401336
    • SGD Paper
    • DOI full text
    • PubMed
  • Hontzeas N, et al. (2007) Development of a microtiter plate version of the yeast DEL assay amenable to high-throughput toxicity screening of chemical libraries. Mutat Res 634(1-2):228-34 PMID:17707690
    • SGD Paper
    • DOI full text
    • PubMed
  • Kirpnick-Sobol Z, et al. (2006) Carcinogenic Cr(VI) and the nutritional supplement Cr(III) induce DNA deletions in yeast and mice. Cancer Res 66(7):3480-4 PMID:16585171
    • SGD Paper
    • DOI full text
    • PubMed
  • Sommers CH and Schiestl RH (2006) Effect of benzene and its closed ring metabolites on intrachromosomal recombination in Saccharomyces cerevisiae. Mutat Res 593(1-2):1-8 PMID:16154601
    • SGD Paper
    • DOI full text
    • PubMed
  • Kirpnick Z, et al. (2005) Yeast DEL assay detects clastogens. Mutat Res 582(1-2):116-34 PMID:15781217
    • SGD Paper
    • DOI full text
    • PubMed
  • Brennan RJ and Schiestl RH (2004) Detecting carcinogens with the yeast DEL assay. Methods Mol Biol 262:111-24 PMID:14769958
    • SGD Paper
    • DOI full text
    • PubMed
  • Egorov AI, et al. (2004) Mutagen X and chlorinated tap water are recombinagenic in yeast. Mutat Res 563(2):159-69 PMID:15364282
    • SGD Paper
    • DOI full text
    • PubMed
  • Howlett NG and Schiestl RH (2004) Nucleotide excision repair deficiency causes elevated levels of chromosome gain in Saccharomyces cerevisiae. DNA Repair (Amst) 3(2):127-34 PMID:14706346
    • SGD Paper
    • DOI full text
    • PubMed
  • Sommers CH and Schiestl RH (2004) 2-Dodecylcyclobutanone does not induce mutations in the Salmonella mutagenicity test or intrachromosomal recombination in Saccharomyces cerevisiae. J Food Prot 67(6):1293-8 PMID:15222568
    • SGD Paper
    • DOI full text
    • PubMed
  • Galli A, et al. (2003) Characterization of the hyperrecombination phenotype of the pol3-t mutation of Saccharomyces cerevisiae. Genetics 164(1):65-79 PMID:12750321
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiechle M, et al. (2002) Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. Nucleic Acids Res 30(24):e136 PMID:12490727
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vonarx EJ, et al. (2002) Detection of Arabidopsis thaliana AtRAD1 cDNA variants and assessment of function by expression in a yeast rad1 mutant. Gene 296(1-2):1-9 PMID:12383497
    • SGD Paper
    • DOI full text
    • PubMed
  • Brennan RJ and Schiestl RH (2001) Persistent genomic instability in the yeast Saccharomyces cerevisiae induced by ionizing radiation and DNA-damaging agents. Radiat Res 155(6):768-77 PMID:11352758
    • SGD Paper
    • DOI full text
    • PubMed
  • Davidson JF and Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 21(24):8483-9 PMID:11713283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Davidson JF and Schiestl RH (2001) Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. J Bacteriol 183(15):4580-7 PMID:11443093
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Davidson JF and Schiestl RH (2000) Mis-targeting of multiple gene disruption constructs containing hisG. Curr Genet 38(4):188-90 PMID:11126777
    • SGD Paper
    • DOI full text
    • PubMed
  • Howlett NG and Schiestl RH (2000) Simultaneous measurement of the frequencies of intrachromosomal recombination and chromosome gain using the yeast DEL assay. Mutat Res 454(1-2):53-62 PMID:11035159
    • SGD Paper
    • DOI full text
    • PubMed
  • Kiechle M, et al. (2000) DNA integration by Ty integrase in yku70 mutant Saccharomyces cerevisiae cells. Mol Cell Biol 20(23):8836-44 PMID:11073984
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brennan RJ and Schiestl RH (1999) The aromatic amine carcinogens o-toluidine and o-anisidine induce free radicals and intrachromosomal recombination in Saccharomyces cerevisiae. Mutat Res 430(1):37-45 PMID:10592316
    • SGD Paper
    • DOI full text
    • PubMed
  • Galli A and Schiestl RH (1999) Cell division transforms mutagenic lesions into deletion-recombinagenic lesions in yeast cells. Mutat Res 429(1):13-26 PMID:10434021
    • SGD Paper
    • DOI full text
    • PubMed
  • Bonatti S, et al. (1998) Inhibition of the Mr 70,000 S6 kinase pathway by rapamycin results in chromosome malsegregation in yeast and mammalian cells. Chromosoma 107(6-7):498-506 PMID:9914383
    • SGD Paper
    • DOI full text
    • PubMed
  • Galli A and Schiestl RH (1998) Effect of Salmonella assay negative and positive carcinogens on intrachromosomal recombination in S-phase arrested yeast cells. Mutat Res 419(1-3):53-68 PMID:9804892
    • SGD Paper
    • DOI full text
    • PubMed
  • Galli A and Schiestl RH (1998) Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells. Genetics 149(3):1235-50 PMID:9649517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Manivasakam P and Schiestl RH (1998) Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol Cell Biol 18(3):1736-45 PMID:9488490
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schiestl RH, et al. (1997) Polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin induce intrachromosomal recombination in vitro and in vivo. Cancer Res 57(19):4378-83 PMID:9331101
    • SGD Paper
    • PubMed
  • Davidson JF, et al. (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93(10):5116-21 PMID:8643537
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhu J and Schiestl RH (1996) Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 16(4):1805-12 PMID:8657156
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yan YX, et al. (1995) Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group. Curr Genet 28(1):12-8 PMID:8536308
    • SGD Paper
    • DOI full text
    • PubMed
  • Schiestl RH, et al. (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14(7):4493-500 PMID:8007955
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gietz RD and Schiestl RH (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7(3):253-63 PMID:1882550
    • SGD Paper
    • DOI full text
    • PubMed
  • Schiestl RH and Prakash S (1990) RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol 10(6):2485-91 PMID:2188090
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schiestl RH, et al. (1990) The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124(4):817-31 PMID:2182387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schiestl RH, et al. (1990) Interchromosomal and intrachromosomal recombination in rad 18 mutants of Saccharomyces cerevisiae. Mol Gen Genet 222(1):25-32 PMID:2233677
    • SGD Paper
    • DOI full text
    • PubMed
  • Schiestl RH and Prakash S (1989) Interactions of the RAD7 and RAD23 excision repair genes of Saccharomyces cerevisiae with DNA repair genes in different epistasis groups. Curr Genet 16(4):219-23 PMID:2697464
    • SGD Paper
    • DOI full text
    • PubMed
  • Schiestl RH, et al. (1989) Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 9(5):1882-96 PMID:2664461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schiestl RH and Prakash S (1988) RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol 8(9):3619-26 PMID:3065620
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schiestl RH, et al. (1988) Analysis of the mechanism for reversion of a disrupted gene. Genetics 119(2):237-47 PMID:2840335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top