Reference: Kastenmayer JP and Green PJ (2000) Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc Natl Acad Sci U S A 97(25):13985-90

Reference Help

Abstract


The 5'-3' exoribonucleases Xrn1p and Xrn2p/Rat1p function in the degradation and processing of several classes of RNA in Saccharomyces cerevisiae. Xrn1p is the main enzyme catalyzing cytoplasmic mRNA degradation in multiple decay pathways, whereas Xrn2p/Rat1p functions in the processing of rRNAs and small nucleolar RNAs (snoRNAs) in the nucleus. Much less is known about the XRN-like proteins of multicellular eukaryotes; however, differences in their activities could explain differences in mRNA degradation between multicellular and unicellular eukaryotes. One such difference is the lack in plants and animals of mRNA decay intermediates like those generated in yeast when Xrn1p is blocked by poly(G) tracts that are inserted within mRNAs. We investigated the XRN-family in Arabidopsis thaliana and found it to have several novel features. First, the Arabidopsis genome contains three XRN-like genes (AtXRNs) that are structurally similar to Xrn2p/Rat1p, a characteristic unique to plants. Furthermore, our experimental results and sequence database searches indicate that Xrn1p orthologs may be absent from higher plants. Second, the lack of poly(G) mRNA decay intermediates in plants cannot be explained by the activity of the AtXRNs, because they are blocked by poly(G) tracts. Finally, complementation of yeast mutants and localization studies indicate that two of the AtXRNs likely function in the nucleus, whereas the third acts in the cytoplasm. Thus, the XRN-family in plants is more complex than in other eukaryotes, and, if an XRN-like enzyme plays a role in mRNA decay in plants, the likely participant is a cytoplasmic Xrn2p/Rat1p ortholog, rather than an Xrn1p ortholog.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Kastenmayer JP, Green PJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference