Reference: Haber JE, et al. (1984) Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106(2):185-205

Reference Help

Abstract


Meiotic recombination between a circular and a linear chromosome in Saccharomyces cerevisiae has been investigated. The circle was a haploid-viable derivative of chromosome III constructed by joining regions near the two chromosome ends via a recombinant DNA construction: (HMR/MAT-URA3-pBR322-MAT/HML) and was also deleted for MAL2 (which therefore uniquely marks a linear chromosome III). Recombination along chromosome III was measured for eight intervals spanning the entire length of the circular derivative. Only 25% of all tetrads from a ring/rod diploid contained four viable spores. These proved to be cases in which there was either no recombination along chromosome III or in which there were two-strand double crossovers or higher order crossovers that would not produce a dicentric chromosome.--At least half of the tetrads with three viable spores included one Ura+ Mal+ spore that was genetically highly unstable. The Ura+ Mal+ spore colonies gave rise to as many as seven genetically distinct, stable ("healed") derivatives, some of which had lost either URA3 or MAL2. Analysis of markers on chromosome III suggests that dicentric chromosomes frequently do not break during meiosis but are inherited intact into a haploid spore. In mitosis, however, the dicentric chromosome is frequently broken, giving rise to a variety of genetically distinct derivatives. We have also shown that dicentric ring chromosomes exhibit similar behavior: at least half the time they are not broken during meiosis but are broken and healed during mitosis.--The ring/rod diploid can also be used to determine the frequency of sister chromatid exchange (SCE) along an entire yeast ring chromosome. We estimate that an unequal number of SCE events occurs in approximately 15% of all cells undergoing meiosis. In contrast, the mitotic instability (and presumably SCE events) of a ring chromosome is low, occurring at a rate of about 1.2 X 10(-3) per cell division.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Haber JE, Thorburn PC, Rogers D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference