Reference: De Boer M, et al. (1998) Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol Microbiol 30(3):603-13

Reference Help

Abstract


The BAP3 gene of Saccharomyces cerevisiae encodes a protein with a high similarity to the BAP2 gene product, a high-affinity permease for branched-chain amino acids. In this paper, we show that, like BAP2, the expression of the BAP3 gene in S. cerevisiae is induced by the addition of branched-chain amino acids to the medium. Unexpectedly, most other naturally occurring L-amino acids found in proteins (with the exception of proline, lysine, arginine and histidine) have the same effect on the expression of BAP3. The induction of BAP3 expression appears to be dependent on Stp1p, a nuclear protein, previously shown to be involved in pre-tRNA maturation and also required for the expression of BAP2, as induction is no longer observed in an stp1 - mutant. The transcriptional regulator Leu3p is not involved in the induction of BAP3 expression, but may act as a repressor of BAP3 expression in the absence of leucine, as can be inferred from a transcriptional analysis in a Deltaleu3 mutant. By extensive deletion analysis of the BAP3 promoter fused to a GUS reporter, as well as by fusions of different parts of the BAP3 promoter to a LacZ reporter, we have found that a portion of the BAP3 promoter from - 418 to - 392 relative to the ATG start codon is both necessary and sufficient for the Stp1p-dependent induction of BAP3 expression by (most) amino acids. We have therefore named this sequence UASaa (amino acid-dependent upstream activator sequence). Neither Stp1p nor Leu3p appear to bind to the UASaa, at least in vitro, as judged from gel retardation assays. Sequences similar to the UASaa can be found in the promoters of BAP2, PTR2 and TAT1; genes that, like BAP3, encode permeases inducible by amino acids, suggesting that amino acid induction of all these genes is exerted via a common mechanism.

Reference Type
Journal Article
Authors
De Boer M, Bebelman JP, Gonçalves PM, Maat J, Van Heerikhuizen H, Planta RJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference