Reference: Hauser NC, et al. (1998) Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14(13):1209-21

Reference Help

Abstract


Open reading frames (6116) of the budding yeast Saccharomyces cerevisiae were PCR-amplified from genomic DNA using 12,232 primers specific to the ends of the coding sequences; the success rate of amplification was 97%. PCR-products were made accessible to hybridization by being arrayed at very high density on solid support media using various robotic devices. Probes made from total RNA preparations were hybridized for the analysis of the transcriptional activity of yeast under various growth conditions and of different strains. Experimental factors that proved critical to the performance, such as different RNA isolation procedures and the assessment of hybridization results, for example, were investigated in detail. Various software tools were developed that permit convenient handling and sound analysis of the large data quantities obtained from transcriptional profiling studies. Comprehensive arrays are being distributed within the European Yeast Functional Analysis Network (EUROFAN) and beyond.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hauser NC, Vingron M, Scheideler M, Krems B, Hellmuth K, Entian KD, Hoheisel JD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence