AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Entian KD
  • References

Author: Entian KD


References 89 references


No citations for this author.

Download References (.nbib)

  • Sharma S and Entian KD (2022) Chemical Modifications of Ribosomal RNA. Methods Mol Biol 2533:149-166 PMID:35796987
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2018) A single N1-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymes. Sci Rep 8(1):11904 PMID:30093689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2017) Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLoS Genet 13(5):e1006804 PMID:28542199
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (2017) Correction: Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay. PLoS One 12(3):e0173940 PMID:28278232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meyer B, et al. (2016) Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res 44(9):4304-16 PMID:27084949
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (2016) Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay. PLoS One 11(12):e0168873 PMID:28033325
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Müller M, et al. (2015) Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy. Cell Rep 10(7):1215-25 PMID:25704822
    • SGD Paper
    • DOI full text
    • PubMed
  • Schosserer M, et al. (2015) Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun 6:6158 PMID:25635753
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2015) Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 43(4):2242-58 PMID:25653167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (2015) Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae. Nucleic Acids Res 43(4):2342-52 PMID:25653162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchhaupt M, et al. (2014) Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification. PLoS One 9(2):e89640 PMID:24586927
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2014) Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 42(5):3246-60 PMID:24335083
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wurm JP, et al. (2014) Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. Biomol NMR Assign 8(2):345-8 PMID:23921755
    • SGD Paper
    • DOI full text
    • PubMed
  • Peifer C, et al. (2013) Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res 41(2):1151-63 PMID:23180764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2013) Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 41(10):5428-43 PMID:23558746
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma S, et al. (2013) Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res 41(19):9062-76 PMID:23913415
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schilling V, et al. (2012) Genetic interactions of yeast NEP1 (EMG1), encoding an essential factor in ribosome biogenesis. Yeast 29(5):167-83 PMID:22588997
    • SGD Paper
    • DOI full text
    • PubMed
  • Suess B, et al. (2012) Aptamer-regulated expression of essential genes in yeast. Methods Mol Biol 824:381-91 PMID:22160910
    • SGD Paper
    • DOI full text
    • PubMed
  • Meyer B, et al. (2011) The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res 39(4):1526-37 PMID:20972225
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Armistead J, et al. (2009) Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. Am J Hum Genet 84(6):728-39 PMID:19463982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kötter P, et al. (2009) A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 37(18):e120 PMID:19592423
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Etschmann MM, et al. (2008) Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts. Appl Microbiol Biotechnol 80(4):579-87 PMID:18597084
    • SGD Paper
    • DOI full text
    • PubMed
  • Taylor AB, et al. (2008) The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res 36(5):1542-54 PMID:18208838
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchhaupt M, et al. (2007) Analysis of 2'-O-methylated nucleosides and pseudouridines in ribosomal RNAs using DNAzymes. Anal Biochem 361(1):102-8 PMID:17181990
    • SGD Paper
    • DOI full text
    • PubMed
  • Buchhaupt M, et al. (2007) Mutations in the nucleolar proteins Tma23 and Nop6 suppress the malfunction of the Nep1 protein. FEMS Yeast Res 7(6):771-81 PMID:17425675
    • SGD Paper
    • DOI full text
    • PubMed
  • Buchhaupt M, et al. (2006) Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p. Mol Genet Genomics 276(3):273-84 PMID:16721597
    • SGD Paper
    • DOI full text
    • PubMed
  • Andrade RP, et al. (2005) Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 332(1):254-62 PMID:15896325
    • SGD Paper
    • DOI full text
    • PubMed
  • Barnett JA and Entian KD (2005) A history of research on yeasts 9: regulation of sugar metabolism. Yeast 22(11):835-94 PMID:16134093
    • SGD Paper
    • DOI full text
    • PubMed
  • Corvey C, et al. (2005) Carbon Source-dependent assembly of the Snf1p kinase complex in Candida albicans. J Biol Chem 280(27):25323-30 PMID:15890650
    • SGD Paper
    • DOI full text
    • PubMed
  • Schade B, et al. (2004) Cold adaptation in budding yeast. Mol Biol Cell 15(12):5492-502 PMID:15483057
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
    • Reference supplement
  • Soares-Silva I, et al. (2004) The disruption of JEN1 from Candida albicans impairs the transport of lactate. Mol Membr Biol 21(6):403-11 PMID:15764370
    • SGD Paper
    • DOI full text
    • PubMed
  • Regelmann J, et al. (2003) Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 14(4):1652-63 PMID:12686616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eschrich D, et al. (2002) Nep1p (Emg1p), a novel protein conserved in eukaryotes and archaea, is involved in ribosome biogenesis. Curr Genet 40(5):326-38 PMID:11935223
    • SGD Paper
    • DOI full text
    • PubMed
  • Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Stückrath I, et al. (2002) Characterization of null mutants of the glyoxylate cycle and gluconeogenic enzymes in S. cerevisiae through metabolic network modeling verified by chemostat cultivation. Biotechnol Bioeng 77(1):61-72 PMID:11745174
    • SGD Paper
    • DOI full text
    • PubMed
  • Juhnke H, et al. (2000) The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 35(4):936-48 PMID:10692169
    • SGD Paper
    • DOI full text
    • PubMed
  • Schüle T, et al. (2000) Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphatase in yeast. EMBO J 19(10):2161-7 PMID:10811607
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bojunga N and Entian KD (1999) Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol Gen Genet 262(4-5):869-75 PMID:10628872
    • SGD Paper
    • DOI full text
    • PubMed
  • Charizanis C, et al. (1999) The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol Gen Genet 261(4-5):740-52 PMID:10394911
    • SGD Paper
    • DOI full text
    • PubMed
  • Charizanis C, et al. (1999) The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol Gen Genet 262(3):437-47 PMID:10589830
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD, et al. (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 262(4-5):683-702 PMID:10628851
    • SGD Paper
    • DOI full text
    • PubMed
  • Bojunga N, et al. (1998) The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p. Mol Gen Genet 260(5):453-61 PMID:9894915
    • SGD Paper
    • DOI full text
    • PubMed
  • Brüning AR, et al. (1998) Physiological and genetic characterisation of osmosensitive mutants of Saccharomyes cerevisiae. Arch Microbiol 170(2):99-105 PMID:9683646
    • SGD Paper
    • DOI full text
    • PubMed
  • Hauser NC, et al. (1998) Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14(13):1209-21 PMID:9791892
    • SGD Paper
    • DOI full text
    • PubMed
  • Hämmerle M, et al. (1998) Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J Biol Chem 273(39):25000-5 PMID:9737955
    • SGD Paper
    • DOI full text
    • PubMed
  • Jonassen T, et al. (1998) Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis. J Biol Chem 273(6):3351-7 PMID:9452453
    • SGD Paper
    • DOI full text
    • PubMed
  • Randez-Gil F, et al. (1998) Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol Cell Biol 18(5):2940-8 PMID:9566913
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnston M, et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387(6632 Suppl):87-90 PMID:9169871
    • SGD Paper
    • PMC full text
    • PubMed
  • Randez-Gil F, et al. (1997) Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17(5):2502-10 PMID:9111319
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schoch CL, et al. (1997) A Saccharomyces cerevisiae mutant defective in the kinesin-like protein Kar3 is sensitive to NaCl-stress. Curr Genet 32(5):315-22 PMID:9371882
    • SGD Paper
    • DOI full text
    • PubMed
  • Galibert F, et al. (1996) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J 15(9):2031-49 PMID:8641269
    • SGD Paper
    • PMC full text
    • PubMed
    • Reference supplement
  • Juhnke H, et al. (1996) Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252(4):456-64 PMID:8879247
    • SGD Paper
    • DOI full text
    • PubMed
  • Krems B, et al. (1996) The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 29(4):327-34 PMID:8598053
    • SGD Paper
    • DOI full text
    • PubMed
  • Hedges D, et al. (1995) CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15(4):1915-22 PMID:7891685
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krems B, et al. (1995) Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. Curr Genet 27(5):427-34 PMID:7586028
    • SGD Paper
    • DOI full text
    • PubMed
  • Kötter P and Entian KD (1995) Cloning and analysis of the nuclear gene MRP-S9 encoding mitochondrial ribosomal protein S9 of Saccharomyces cerevisiae. Curr Genet 28(1):26-31 PMID:8536310
    • SGD Paper
    • DOI full text
    • PubMed
  • Melcher K, et al. (1995) Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 27(6):501-8 PMID:7553933
    • SGD Paper
    • DOI full text
    • PubMed
  • Proft M, et al. (1995) Identification and characterization of regulatory elements in the phosphoenolpyruvate carboxykinase gene PCK1 of Saccharomyces cerevisiae. Mol Gen Genet 246(3):367-73 PMID:7854322
    • SGD Paper
    • DOI full text
    • PubMed
  • Proft M, et al. (1995) CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. EMBO J 14(24):6116-26 PMID:8557031
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rose M, et al. (1995) Sequence and functional analysis of a 7.2 kb DNA fragment containing four open reading frames located between RPB5 and CDC28 on the right arm of chromosome II. Yeast 11(9):865-71 PMID:7483850
    • SGD Paper
    • DOI full text
    • PubMed
  • Feldmann H, et al. (1994) Complete DNA sequence of yeast chromosome II. EMBO J 13(24):5795-809 PMID:7813418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Entian KD and Barnett JA (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17(12):506-10 PMID:1471261
    • SGD Paper
    • DOI full text
    • PubMed
  • Melcher K and Entian KD (1992) Genetic analysis of serine biosynthesis and glucose repression in yeast. Curr Genet 21(4-5):295-300 PMID:1326413
    • SGD Paper
    • DOI full text
    • PubMed
  • Niederacher D, et al. (1992) Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Curr Genet 22(5):363-70 PMID:1330335
    • SGD Paper
    • DOI full text
    • PubMed
  • Schnell N, et al. (1992) The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet 21(4-5):269-73 PMID:1525853
    • SGD Paper
    • DOI full text
    • PubMed
  • Niederacher D and Entian KD (1991) Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur J Biochem 200(2):311-9 PMID:1889400
    • SGD Paper
    • DOI full text
    • PubMed
  • Schnell N and Entian KD (1991) Identification and characterization of a Saccharomyces cerevisiae gene (PAR1) conferring resistance to iron chelators. Eur J Biochem 200(2):487-93 PMID:1889413
    • SGD Paper
    • DOI full text
    • PubMed
  • Schüller HJ and Entian KD (1991) Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J Bacteriol 173(6):2045-52 PMID:2002006
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Entian KD and Loureiro-Dias MC (1990) Misregulation of maltose uptake in a glucose repression defective mutant of Saccharomyces cerevisiae leads to glucose poisoning. J Gen Microbiol 136(5):855-60 PMID:2199604
    • SGD Paper
    • DOI full text
    • PubMed
  • Albig W and Entian KD (1988) Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Gene 73(1):141-52 PMID:3072253
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD, et al. (1988) Isolation and primary structure of the gene encoding fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. FEBS Lett 236(1):195-200 PMID:2841162
    • SGD Paper
    • DOI full text
    • PubMed
  • Schüller HJ and Entian KD (1988) Molecular characterization of yeast regulatory gene CAT3 necessary for glucose derepression and nuclear localization of its product. Gene 67(2):247-57 PMID:3049255
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD, et al. (1987) Studies on the regulation of enolases and compartmentation of cytosolic enzymes in Saccharomyces cerevisiae. Biochim Biophys Acta 923(2):214-21 PMID:3545298
    • SGD Paper
    • DOI full text
    • PubMed
  • Kopetzki E, et al. (1987) Purification procedure and N-terminal amino acid sequence of yeast malate dehydrogenase isoenzymes. Biochim Biophys Acta 912(3):398-403 PMID:3552052
    • SGD Paper
    • DOI full text
    • PubMed
  • Niederacher D and Entian KD (1987) Isolation and characterization of the regulatory HEX2 gene necessary for glucose repression in yeast. Mol Gen Genet 206(3):505-9 PMID:3035346
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD, et al. (1985) Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Mol Cell Biol 5(11):3035-40 PMID:3018496
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fröhlich KU, et al. (1985) The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene 36(1-2):105-11 PMID:3905511
    • SGD Paper
    • DOI full text
    • PubMed
  • Kopetzki E and Entian KD (1985) Glucose repression and hexokinase isoenzymes in yeast. Isolation and characterization of a modified hexokinase PII isoenzyme. Eur J Biochem 146(3):657-62 PMID:3882419
    • SGD Paper
    • DOI full text
    • PubMed
  • Kopetzki E, et al. (1985) Complete nucleotide sequence of the hexokinase PI gene (HXK1) of Saccharomyces cerevisiae. Gene 39(1):95-101 PMID:3908224
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD and Fröhlich KU (1984) Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J Bacteriol 158(1):29-35 PMID:6370959
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Entian KD, et al. (1984) Regulation of enzymes and isoenzymes of carbohydrate metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 799(2):181-6 PMID:6329315
    • SGD Paper
    • DOI full text
    • PubMed
  • Fröhlich KU, et al. (1984) Cloning and restriction analysis of the hexokinase PII gene of the yeast Saccharomyces cerevisiae. Mol Gen Genet 194(1-2):144-8 PMID:6328210
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD and Mecke D (1982) Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J Biol Chem 257(2):870-4 PMID:7033220
    • SGD Paper
    • PubMed
  • Entian KD and Zimmermann FK (1982) New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. J Bacteriol 151(3):1123-8 PMID:7050076
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fröhlich KU and Entian KD (1982) Regulation of gluconeogenesis in the yeast Saccharomyces cerevisiae: evidence for conversion of enolase isoenzymes. FEBS Lett 139(2):164-6 PMID:7042390
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD (1981) A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis. Mol Gen Genet 184(2):278-82 PMID:7035837
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD (1980) A defect in carbon catabolite repression associated with uncontrollable and excessive maltose uptake. Mol Gen Genet 179(1):169-75 PMID:7005623
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD (1980) Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet 178(3):633-7 PMID:6993859
    • SGD Paper
    • DOI full text
    • PubMed
  • Entian KD and Zimmermann FK (1980) Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Mol Gen Genet 177(2):345-50 PMID:6988675
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top