Reference: Shinohara A, et al. (1993) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4(3):239-43

Reference Help

Abstract


Rad51, of Saccharomyces cerevisiae, is a homologue of recA of Escherichia coli and plays crucial roles in both mitotic and meiotic recombination and in repair of double-strand breaks of DNA. We have cloned genes from human, mouse and fission yeast that are homologous to rad51. The 339 amino acid proteins predicted for the two mammalian genes are almost identical and are highly homologous (83%) with the yeast proteins. The mouse gene is transcribed at a high level in thymus, spleen, testis and ovary and at a lower level in brain and other tissues. The rad51 homologues fail to complement the DNA repair defect of rad51 mutants of S. cerevisiae. The mouse gene is located in the F1 region of chromosome 2 and the human gene maps to chromosome 15.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Shinohara A, Ogawa H, Matsuda Y, Ushio N, Ikeo K, Ogawa T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence