Reference: Carrillo-Muñoz AJ, et al. (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 19(2):130-9

Reference Help

Abstract


Different kinds of mycoses, especially invasive, have become an important public health problem as their incidence has increased dramatically in the last decades in relation to AIDS, hematological malignancies, transplant recipients and other immunosuppressed individuals. Management of fungal infections is markedly limited by problems of drug safety, resistance and effectiveness profile. Current therapy for invasive mycoses uses a relatively reduced number of antifungal drugs, such as amphotericin B, fluconazole and itraconazole. Other new antifungal agents from old and new chemical families, like voriconazole, posaconazole, ravuconazole, caspofungin and micafungin, have been introduced into the armamentarium for fungal infections management. This review is focused on the mode of action of those antifungal drugs used against pathogenic yeasts. The interaction of amphotericin B with ergosterol and other membrane sterols results in the production of aqueous pores of drug and the ergosterol biosynthetic pathway is the target of the allylamines, phenylmorpholines and azole antifungal agents. The main molecular target of azole antifungals is the cytochrome P-450 protein Erg11p/Cyp51p. Echinocandins, a new class of antifungal drugs, are fungal secondary metabolites that act against beta-1-3-D-glucan synthesis. The phenylmorpholines, of which amorolfine is the sole representative in human therapy, affect two targets in the ergosterol pathway: Erg24p (delta 14 reductase) and Erg2p (delta 8-delta 7 isomerase). The sordarins group are protein synthesis inhibitors that work by blocking the function of fungal translation elongation factor 2. Other protein inhibitors are zofimarin, BE31045, SCH57504, xylarin, hypoxysordarin and GR135402. In order to overcome the problems derived from the exploitation of azole drugs, macrolides and echinocandins, novel targets were explored. Proposed antifungal drugs have been developed against potential targets like the N-myristylation of fungal proteins, with inhibitors like myristate and histidine analogues or myristoylpeptide derivatives, aminobenzothiazoles, quinolines and benzofurans. Polymerization of cell wall carbohydrates from uridine di-phospho sugars is another potential target.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference