Reference: Shubassi G, et al. (2003) Activity of phosphoforms and truncated versions of Ndt80, a checkpoint-regulated sporulation-specific transcription factor of Saccharomyces cerevisiae. Mol Genet Genomics 270(4):324-36

Reference Help

Abstract


Ndt80 contributes to the highly regulated cascade of sequential gene expression that directs spore formation in Saccharomyces cerevisiae. This DNA-binding transcriptional activator, which is responsible for the expression of a set of middle sporulation-specific genes, is a target of the meiotic recombination checkpoint. Triggering of this checkpoint prevents phosphorylation and accumulation of active Ndt80. In this study we have investigated the requirements for the activation function of Ndt80 by exploring the role of phosphorylation in the regulation of its activity and by examining the effect of C-terminal truncations. Of three phosphoforms of Ndt80 that we resolved, which we refer to as P approximately Ndt80", P approximately Ndt80', and P approximately Ndt80 in order of increasing electrophoretic mobility, the P approximately Ndt80" and P approximately Ndt80' isoforms correlated with active Ndt80. In particular, P approximately Ndt80" was present in lysates from wild-type sporulating cells and in cells that bypassed checkpoint-mediated arrest as a result of mutations in RAD17, SUM1, or SWE1, or overexpression of NDT80. P approximately Ndt80' was the slowest-migrating isoform that accumulated in Delta ime2/Delta ime2 Delta sum1/Delta sum1 cells in sporulation medium and in mitotic cells that ectopically expressed NDT80. Nonphosphorylated Ndt80 and P approximately Ndt80, which had a slightly lower mobility than nonphosphorylated Ndt80 and was the predominant phosphoform present in checkpoint-arrested cells, correlated with inactive Ndt80. These data are consistent with the notion that extensive phosphorylation, but not Ime2-dependent phosphorylation, of Ndt80 is required for its activity. Examination of the effect of increasingly extensive truncation of the C terminal region of Ndt80 revealed that some functions of Ndt80 were more sensitive to a reduction in its activity than others. In particular, we found that a truncated version of Ndt80 that lacked the last 110 residues was able to promote expression of some middle sporulation-specific genes, but could not direct spore formation. Full activity, however, could be restored to this version of Ndt80 by increasing its level of expression.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shubassi G, Luca N, Pak J, Segall J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference