Reference: Buziol S, et al. (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2(3):283-91

Reference Help

Abstract


We have investigated the role and the kinetic properties of the Hxt5 glucose transporter of Saccharomyces cerevisiae. The HXT5 gene was not expressed during growth of the yeast cells in rich medium with glucose or raffinose. However, it became strongly induced during nitrogen or carbon starvation. We have constructed yeast strains constitutively expressing only Hxt5, Hxt1 (low affinity) or Hxt7 (high affinity), but no other glucose transporters. Aerobic fed-batch cultures at quasi steady-state conditions, and aerobic and anaerobic chemostat cultures at steady-state conditions of these strains were used for estimation of the kinetic properties of the individual transporters under in vivo conditions, by investigating the dynamic responses of the strains to changes in extracellular glucose concentration. The K(m) value and the growth properties of the HXT5 single expression strain indicate that Hxt5 is a transporter with intermediate affinity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Evidence Method Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence