Reference: Longo VD and Fabrizio P (2002) Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59(6):903-8

Reference Help

Abstract


Recent studies implicate similar proteins in the regulation of longevity in organisms ranging from yeast to mice. Studies in yeast and worms suggest that inactivation of glucose or insulin/insulin-like growth factor-l (IGF-1) signaling pathways extends longevity by causing a shift from a reproductive phase to a non-reproductive maintenance phase involving the expression of many genes. These stress resistance pathways appear to have evolved to induce maintenance systems and promote longevity during periods of starvation. In yeast, mutations that decrease the activity of glucose signaling pathways extend longevity by activating stress resistance transcription factors that regulate the expression of genes involved in antioxidant and heat protection, glycogen storage, protein degradation, DNA repair, and metabolism. A remarkably similar set of proteins regulated by growth factors that control glucose metabolism is implicated in life span extension in worms, and possibly in flies and mice. Studies in worms and flies point to secondary hormones as mediators of the effect of insulin/ IGF-1 signaling on longevity, whereas studies in yeast and mammalian cells indicate that glucose or insulin/ IGF-1 may decrease longevity by directly down-regulating stress resistance genes. In yeast, longevity mutations postpone superoxide toxicity and mitochondrial damage. However, the small life span extension caused by the overexpression of superoxide dismutases and catalase in yeast and flies indicates that increased antioxidant protection alone cannot be responsible for the major life span extension caused by signal transduction mutations. Although we are only beginning to understand the molecular mechanisms that mediate life span extension, the similarities between longevity regulatory pathways in organisms ranging from yeast to mice suggest that insulin/ IGF-1 signaling pathways may also regulate cell damage and longevity in humans.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Longo VD, Fabrizio P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference