Literature Help
FAS2 / YPL231W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Gong Y, et al. (2025) Combinatory breeding of sake yeast strains with mutations that enhance Ginjo aroma production. Biosci Biotechnol Biochem 89(6):910-917 PMID:40097305
- Samani EK, et al. (2024) Direct structural analysis of a single acyl carrier protein domain in fatty acid synthase from the fungus Saccharomyces cerevisiae. Commun Biol 7(1):92 PMID:38216676
- Kuribayashi T, et al. (2023) Genotypic analysis of the FAS2-F1279Y (3836T>A) polymorphism conferring high ethyl caprylate productivity in industrial sake yeast strains. J Gen Appl Microbiol 68(5):248-252 PMID:35676064
- Singh K, et al. (2023) Reconstruction of a fatty acid synthesis cycle from acyl carrier protein and cofactor structural snapshots. Cell 186(23):5054-5067.e16 PMID:37949058
- Liu H, et al. (2022) Engineering membrane asymmetry to increase medium-chain fatty acid tolerance in Saccharomyces cerevisiae. Biotechnol Bioeng 119(1):277-286 PMID:34708879
- Chadani T, et al. (2021) Genome Editing to Generate Sake Yeast Strains with Eight Mutations That Confer Excellent Brewing Characteristics. Cells 10(6) PMID:34073778
- Fukuda N, et al. (2021) Polyploid engineering by increasing mutant gene dosage in yeasts. Microb Biotechnol 14(3):979-992 PMID:33350592
- Fischer M, et al. (2020) Analysis of the co-translational assembly of the fungal fatty acid synthase (FAS). Sci Rep 10(1):895 PMID:31964902
- Martínez-Montañés F, et al. (2020) Phosphoproteomic Analysis across the Yeast Life Cycle Reveals Control of Fatty Acyl Chain Length by Phosphorylation of the Fatty Acid Synthase Complex. Cell Rep 32(6):108024 PMID:32783946
- Xie X, et al. (2020) Distinct functions of two FabA-like dehydratase domains of polyunsaturated fatty acid synthase in the biosynthesis of very long-chain polyunsaturated fatty acids. Environ Microbiol 22(9):3772-3783 PMID:32618113
- Xue P, et al. (2020) A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids. Biotechnol Bioeng 117(7):2131-2138 PMID:32219854
- Kim Y, et al. (2019) Global analysis of protein homomerization in Saccharomyces cerevisiae. Genome Res 29(1):135-145 PMID:30567710
- Gajewski J, et al. (2017) Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun 8:14650 PMID:28281527
- Takahashi T, et al. (2017) Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio. J Biosci Bioeng 123(6):707-713 PMID:28286120
- Trindade de Carvalho B, et al. (2017) Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast. mBio 8(6) PMID:29114020
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Perez DR, et al. (2015) Interactions of the acyl chain with the Saccharomyces cerevisiae acyl carrier protein. Biochemistry 54(13):2205-13 PMID:25774789
- Suresh HG, et al. (2015) Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae. Mol Biol Cell 26(9):1601-15 PMID:25761633
- Tamura H, et al. (2015) Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity. Biosci Biotechnol Biochem 79(7):1191-9 PMID:25787154
- Leber C and Da Silva NA (2014) Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111(2):347-58 PMID:23928901
- Runguphan W and Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103-13 PMID:23899824
- Aung HW, et al. (2013) Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Ind Biotechnol (New Rochelle N Y) 9(4):215-228 PMID:24678285
- Makanae K, et al. (2013) Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res 23(2):300-11 PMID:23275495
- Sangwallek J, et al. (2013) Ketoacyl synthase domain is a major determinant for fatty acyl chain length in Saccharomyces cerevisiae. Arch Microbiol 195(12):843-52 PMID:24201996
- Braconi D, et al. (2011) Surfome analysis of a wild-type wine Saccharomyces cerevisiae strain. Food Microbiol 28(6):1220-30 PMID:21645823
- Kotaka A, et al. (2010) The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene. J Biosci Bioeng 110(6):675-8 PMID:20708434
- Titus LC, et al. (2010) Members of the RSC chromatin-remodeling complex are required for maintaining proper nuclear envelope structure and pore complex localization. Mol Biol Cell 21(6):1072-87 PMID:20110349
- Johansson P, et al. (2009) Multimeric options for the auto-activation of the Saccharomyces cerevisiae FAS type I megasynthase. Structure 17(8):1063-74 PMID:19679086
- Perez DR and Wider G (2009) 1H, 15N, 13C resonance assignment of the acyl carrier protein subunit of the Saccharomyces cerevisiae fatty acid synthase. Biomol NMR Assign 3(1):133-6 PMID:19636964
- Johansson P, et al. (2008) Inhibition of the fungal fatty acid synthase type I multienzyme complex. Proc Natl Acad Sci U S A 105(35):12803-8 PMID:18725634
- Lomakin IB, et al. (2007) The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129(2):319-32 PMID:17448991
- Reinders J, et al. (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6(11):1896-906 PMID:17761666
- Oura T and Kajiwara S (2006) Cloning and functional characterization of a fatty acid synthase component FAS2 gene from Saccharomyces kluyveri. Curr Genet 49(6):393-402 PMID:16479401
- Chertemps T, et al. (2005) A new elongase selectively expressed in Drosophila male reproductive system. Biochem Biophys Res Commun 333(4):1066-72 PMID:15975553
- Rodríguez S, et al. (2001) Highly stereoselective reagents for beta-keto ester reductions by genetic engineering of baker's yeast. J Am Chem Soc 123(8):1547-55 PMID:11456752
- Wenz P, et al. (2001) A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product. Nucleic Acids Res 29(22):4625-32 PMID:11713312
- Fichtlscherer F, et al. (2000) A novel function of yeast fatty acid synthase. Subunit alpha is capable of self-pantetheinylation. Eur J Biochem 267(9):2666-71 PMID:10785388
- Brody S, et al. (1997) Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae. FEBS Lett 408(2):217-20 PMID:9187370
- Schuster H, et al. (1995) Substrate and product binding sites of yeast fatty acid synthase. Stoichiometry and binding kinetics of wild-type and in vitro mutated enzymes. Eur J Biochem 228(2):417-24 PMID:7705357
- Inokoshi J, et al. (1994) Cerulenin-resistant mutants of Saccharomyces cerevisiae with an altered fatty acid synthase gene. Mol Gen Genet 244(1):90-6 PMID:8041367
- Schüller HJ, et al. (1994) Importance of general regulatory factors Rap1p, Abf1p and Reb1p for the activation of yeast fatty acid synthase genes FAS1 and FAS2. Eur J Biochem 225(1):213-22 PMID:7925441
- Morisaki N, et al. (1993) Effect of side-chain structure on inhibition of yeast fatty-acid synthase by cerulenin analogues. Eur J Biochem 211(1-2):111-5 PMID:8425521
- Chirala SS (1992) Coordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89(21):10232-6 PMID:1359536
- Schüller HJ, et al. (1992) Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J 11(1):107-14 PMID:1740101
- Schüller HJ, et al. (1992) Regulatory gene INO4 of yeast phospholipid biosynthesis is positively autoregulated and functions as a transactivator of fatty acid synthase genes FAS1 and FAS2 from Saccharomyces cerevisiae. Nucleic Acids Res 20(22):5955-61 PMID:1461729
- Schüller HJ, et al. (1992) Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components. Eur J Biochem 203(3):607-14 PMID:1735446
- Stoops JK, et al. (1992) Structure-function relationships of the yeast fatty acid synthase: negative-stain, cryo-electron microscopy, and image analysis studies of the end views of the structure. Proc Natl Acad Sci U S A 89(14):6585-9 PMID:1631160
- Lill U, et al. (1991) Inhibitors of metabolic reactions. Scope and limitation of acyl-CoA-analogue CoA-thioethers. Eur J Biochem 198(3):767-73 PMID:1675605
- Stoops JK, et al. (1990) The yeast fatty acid synthase. Pathway for transfer of the acetyl group from coenzyme A to the Cys-SH of the condensation site. J Biol Chem 265(28):16971-7 PMID:2211602
- Chang SI and Hammes GG (1989) Homology analysis of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast. Proc Natl Acad Sci U S A 86(21):8373-6 PMID:2682649
- Heidlas J, et al. (1988) Purification and characterization of two oxidoreductases involved in the enantioselective reduction of 3-oxo, 4-oxo and 5-oxo esters in baker's yeast. Eur J Biochem 172(3):633-9 PMID:3280313
- Mohamed AH, et al. (1988) Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived from FAS2 gene sequence. J Biol Chem 263(25):12315-25 PMID:2900835
- Hackenjos WA and Schramm HJ (1987) Electron microscopical structure analysis of yeast fatty-acid synthase at low resolution. Biol Chem Hoppe Seyler 368(1):19-36 PMID:3548748
- Schweizer M, et al. (1986) Molecular structure and expression of fatty acid synthetase genes in yeast. Biochem Soc Trans 14(3):572-4 PMID:3525275
- Singh N, et al. (1985) Yeast fatty acid synthase: structure to function relationship. Biochemistry 24(23):6598-602 PMID:3910094
- Karam GA and Arslanian MJ (1984) A rapid method for the purification of fatty acid synthetase from the yeast Saccharomyces cerevisiae. Int J Biochem 16(6):667-73 PMID:6381160
- Schweizer M, et al. (1984) Molecular cloning of the yeast fatty acid synthetase genes, FAS1 and FAS2: illustrating the structure of the FAS1 cluster gene by transcript mapping and transformation studies. Mol Gen Genet 194(3):457-65 PMID:6330502
- Kuziora MA, et al. (1983) Molecular cloning of fatty acid synthetase genes from Saccharomyces cerevisiae. J Biol Chem 258(19):11648-53 PMID:6311818
- McCarthy AD, et al. (1983) Evidence that the multifunctional polypeptides of vertebrate and fungal fatty acid synthases have arisen by independent gene fusion events. FEBS Lett 162(2):300-4 PMID:6354747
- Shoukry S, et al. (1983) Inactivation of yeast fatty acid synthetase by modifying the beta-ketoacyl reductase active lysine residue with pyridoxal 5'-phosphate. Arch Biochem Biophys 226(1):224-30 PMID:6416172
- Slabas AR, et al. (1983) The interaction of mammalian medium-chain hydrolase with yeast fatty acid synthetase. Eur J Biochem 134(1):27-32 PMID:6345160
- Aprahamian SA, et al. (1982) Comparative studies on the kinetic parameters and product analyses of chicken and rat liver and yeast fatty acid synthetase. Comp Biochem Physiol B 71(4):577-82 PMID:7044669
- Kawaguchi A, et al. (1982) Mechanism of action of cerulenin on fatty acid synthetase. Effect of cerulenin on iodoacetamide-induced malonyl-CoA decarboxylase activity. J Biochem 92(1):7-12 PMID:6749834
- Werkmeister K, et al. (1981) Complementation in vitro between purified mutant fatty acid synthetase complexes of yeast. Eur J Biochem 116(2):303-9 PMID:7018906
- Wieland F, et al. (1979) Studies on the multi-enzyme complex of yeast fatty-acid synthetase. Reversible dissociation and isolation of two polypeptide chains. Eur J Biochem 94(1):189-97 PMID:374077
- Stoops JK and Wakil SJ (1978) The isolation of the two subunits of yeast fatty acid synthetase. Biochem Biophys Res Commun 84(1):225-31 PMID:365179
- Stoops JK, et al. (1978) Studies on the yeast fatty acid synthetase. Subunit composition and structural organization of a large multifunctional enzyme complex. J Biol Chem 253(12):4464-75 PMID:350874
- Wieland F, et al. (1978) Distribution of yeast fatty acid synthetase subunits: three-dimensional model of the enzyme. Proc Natl Acad Sci U S A 75(12):5792-6 PMID:366602
- Kresze GB, et al. (1977) Reaction of yeast fatty acid synthetase with iodoacetamide. 2. Identification of the amino acid residues reacting with iodoacetamide and primary structure of a peptide containing the peripheral sulfhydryl group. Eur J Biochem 79(1):181-90 PMID:334543
- Kresze GB, et al. (1977) Reaction of yeast fatty acid synthetase with iodoacetamide. 3. Malonyl-coenzyme A decarboxylase as product of the reaction of fatty acid synthetase with iodoacetamide. Eur J Biochem 79(1):191-9 PMID:334544
- Oesterhelt D, et al. (1977) Reaction of yeast fatty acid synthetase with iodoacetamide. 1. Kinetics of inactivation and extent of carboxamidomethylation. Eur J Biochem 79(1):173-80 PMID:21088
- Schreckenbach T, et al. (1977) The palmityl binding sites of fatty acid synthetase from yeast. Eur J Biochem 80(1):13-23 PMID:336365
- Schweizer E (1977) [Biosynthesis and structure of the yeast fatty acid synthetase complex]. Naturwissenschaften 64(7):366-70 PMID:337164
- Brown OR and Stees JL (1976) Simple assay for the condensation component enzyme (beta-ketoacyl synthetase) of fatty acid synthetase. Microbios 17(67):17-21 PMID:19681
- Qureshi AA, et al. (1976) Subunits of fatty acid synthetase complexes. Comparative study of enzyme activities and properties of the half-molecular weight nonidentical subunits of fatty acid synthetase complexes obtained from rat, human, and chicken liver and yeast. Arch Biochem Biophys 177(2):364-78 PMID:65153
- Schwietz H, et al. (1976) End group analysis of yeast fatty acid synthetase. Biochim Biophys Acta 453(2):453-8 PMID:793623
- Dietlein G and Schweizer E (1975) Control of fatty-acid synthetase biosynthesis in Saccharomyces cerevisiae. Eur J Biochem 58(1):177-84 PMID:810348
- Knobling A and Schweizer E (1975) Temperature-sensitive mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem 59(2):415-21 PMID:1107031
- Knobling A, et al. (1975) Malonyl and palmityl transferase-less mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem 56(2):359-67 PMID:1100391
- Stoops JK, et al. (1975) Presence of two polypeptide chains comprising fatty acid synthetase. Proc Natl Acad Sci U S A 72(5):1940-4 PMID:1098047
- Schweizer E, et al. (1973) Pantetheine-free mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem 39(2):353-62 PMID:4590449
- Sumper M, et al. (1969) Dissociation and reconstitution of the stable multienzyme complex fatty acid synthetase from yeast. FEBS Lett 5(1):45-49 PMID:11947235
- Klein HP, et al. (1967) Fatty acid synthetase of Saccharomyces cerevisiae. J Bacteriol 93(6):1966-71 PMID:6025308
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Meng Q, et al. (2025) Reprogramming yeast metabolism to Alter fatty acid profiles from even-chain to odd-chain Configuration. Bioresour Technol 435:132858 PMID:40545048
- Yang M, et al. (2025) Breeding High-Yield Ethyl Caproate-Producing Saccharomyces cerevisiae in Sake: Flux Regulation from Glycolytic Fermentation to the FAS Pathway and Alcohol Acyltransferase Overexpression. J Agric Food Chem 73(13):7990-8000 PMID:40106670
- Bennis NX, et al. (2024) Unlocking lager's flavour palette by metabolic engineering of Saccharomyces pastorianus for enhanced ethyl ester production. Metab Eng 85:180-193 PMID:39134117
- Jang HS, et al. (2024) The ubiquitin-proteasome system degrades fatty acid synthase under nitrogen starvation when autophagy is dysfunctional in Saccharomyces cerevisiae. Biochem Biophys Res Commun 733:150423 PMID:39053108
- Li Q, et al. (2024) Lysophospholipid acyltransferase-mediated formation of saturated glycerophospholipids maintained cell membrane integrity for hypoxic adaptation. FEBS J 291(14):3191-3210 PMID:38602252
- Wang Y, et al. (2024) Enhancement of ester biosynthesis in blueberry wines through co-fermentation via cell-cell contact between Torulaspora delbrueckii and Saccharomyces cerevisiae. Food Res Int 179:114029 PMID:38342548
- Hayashi S, et al. (2023) A non-canonical Puf3p-binding sequence regulates CAT5/COQ7 mRNA under both fermentable and respiratory conditions in budding yeast. PLoS One 18(12):e0295659 PMID:38100455
- Klinkaewboonwong N, et al. (2023) Targeted Mutations Produce Divergent Characteristics in Pedigreed Sake Yeast Strains. Microorganisms 11(5) PMID:37317248
- Mathivanan A and Nachiappan V (2023) Deletion of ORM2 Causes Oleic Acid-Induced Growth Defects in Saccharomyces cerevisiae. Appl Biochem Biotechnol 195(10):5916-5932 PMID:36719521
- Mishra S, et al. (2023) Design and application of a kinetic model of lipid metabolism in Saccharomyces cerevisiae. Metab Eng 75:12-18 PMID:36371031
- Pozdniakova TA, et al. (2023) Optimization of a hybrid bacterial/Arabidopsis thaliana fatty acid synthase system II in Saccharomyces cerevisiae. Metab Eng Commun 17:e00224 PMID:37415783
- Schubert OT, et al. (2022) Genome-wide base editor screen identifies regulators of protein abundance in yeast. Elife 11 PMID:36326816
- Xue SJ, et al. (2022) Oxidation-reduction potential affects medium-chain fatty acid ethyl ester production during wine alcohol fermentation. Food Res Int 157:111369 PMID:35761634
- Zhang G, et al. (2022) Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae. Metab Eng 73:225-234 PMID:35987431
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Liu P, et al. (2021) Effect of Unsaturated Fatty Acids on Intra-Metabolites and Aroma Compounds of Saccharomyces cerevisiae in Wine Fermentation. Foods 10(2) PMID:33573124
- Han L, et al. (2020) Discovery and identification of medium-chain fatty acid responsive promoters in Saccharomyces cerevisiae. Eng Life Sci 20(5-6):186-196 PMID:32874182
- Randez-Gil F, et al. (2020) Myriocin-induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance. Microb Biotechnol 13(4):1066-1081 PMID:32212314
- Wernig F, et al. (2020) De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae. Metab Eng Commun 10:e00111 PMID:31867212
- Wernig F, et al. (2020) Fusing α and β subunits of the fungal fatty acid synthase leads to improved production of fatty acids. Sci Rep 10(1):9780 PMID:32555375
- Alexandrov AI, et al. (2019) Analysis of novel hyperosmotic shock response suggests 'beads in liquid' cytosol structure. Biol Open 8(7) PMID:31285266
- Li P, et al. (2019) CRISPR/Cas-based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE1 in thermotolerance. Microb Biotechnol 12(6):1154-1163 PMID:30394685
- Liu PT, et al. (2019) Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of Saccharomyces cerevisiae and Aroma Compounds during Red Wine Fermentation. Molecules 24(3) PMID:30717212
- Liu ZL, et al. (2019) Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 103(14):5781-5796 PMID:31139900
- Tondini F, et al. (2019) Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. Int J Food Microbiol 294:42-49 PMID:30763906
- Hariri H, et al. (2018) Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep 19(1):57-72 PMID:29146766
- Henritzi S, et al. (2018) An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. Biotechnol Biofuels 11:150 PMID:29881455
- Rossini E, et al. (2018) Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs). Chem Commun (Camb) 54(82):11606-11609 PMID:30264077
- Shiber A, et al. (2018) Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561(7722):268-272 PMID:30158700
- Blank HM, et al. (2017) Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. EMBO J 36(4):487-502 PMID:28057705
- Yu T, et al. (2017) Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat Commun 8:15587 PMID:28548095
- d'Espaux L, et al. (2017) Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab Eng 42:115-125 PMID:28606738
- Chen Y, et al. (2016) Improved ethyl caproate production of Chinese liquor yeast by overexpressing fatty acid synthesis genes with OPI1 deletion. J Ind Microbiol Biotechnol 43(9):1261-70 PMID:27344573
- Archer SK, et al. (2015) Probing the closed-loop model of mRNA translation in living cells. RNA Biol 12(3):248-54 PMID:25826658
- Chen B, et al. (2015) Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab Eng 31:53-61 PMID:26164646
- Eriksen DT, et al. (2015) Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae. ACS Synth Biol 4(7):808-14 PMID:25594225
- Fernandez-Moya R, et al. (2015) Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles. Biotechnol Bioeng 112(12):2618-23 PMID:26084339
- Nadai C, et al. (2015) Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite. Int J Food Microbiol 215:49-56 PMID:26325600
- Shpilka T, et al. (2015) Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proc Natl Acad Sci U S A 112(5):1434-9 PMID:25605918
- Blein-Nicolas M, et al. (2013) Yeast proteome variations reveal different adaptive responses to grape must fermentation. Mol Biol Evol 30(6):1368-83 PMID:23493259
- Chumnanpuen P, et al. (2013) Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol 7 Suppl 3(Suppl 3):S7 PMID:24456840
- Ciccarelli L, et al. (2013) Structure and conformational variability of the mycobacterium tuberculosis fatty acid synthase multienzyme complex. Structure 21(7):1251-7 PMID:23746808
- Vidal EE, et al. (2013) Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation. Food Chem 138(1):701-8 PMID:23265543
- Schreiber TB, et al. (2012) Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 11(4):2397-408 PMID:22369663
- Shin GH, et al. (2012) Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Yeast 29(9):371-83 PMID:22926964
- Yang J, et al. (2012) Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. OMICS 16(7-8):374-86 PMID:22734833
- Zara G, et al. (2012) FLO11 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain. FEMS Yeast Res 12(7):864-6 PMID:22805178
- Zheng DQ, et al. (2012) Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics 13:479 PMID:22978491
- Jiménez-Martí E, et al. (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145(1):211-20 PMID:21247650
- Panni S, et al. (2011) Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae and H. sapiens. Proteomics 11(1):128-43 PMID:21182200
- Wimalarathna R, et al. (2011) Transcriptional control of genes involved in yeast phospholipid biosynthesis. J Microbiol 49(2):265-73 PMID:21538248
- Gipson P, et al. (2010) Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci U S A 107(20):9164-9 PMID:20231485
- Marino SM, et al. (2010) Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae. Biochemistry 49(35):7709-21 PMID:20698499
- Baranes-Bachar K, et al. (2008) New interacting partners of the F-box protein Ufo1 of yeast. Yeast 25(10):733-43 PMID:18949821
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cheraiti N, et al. (2008) Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77(5):1093-109 PMID:17938904
- Desfougères T, et al. (2008) SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion. Biochem J 409(1):299-309 PMID:17803462
- Huthmacher C, et al. (2008) A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling. J Theor Biol 252(3):456-64 PMID:17988690
- Alvarez-Vasquez F, et al. (2007) Coordination of the dynamics of yeast sphingolipid metabolism during the diauxic shift. Theor Biol Med Model 4:42 PMID:17974024
- Chayakulkeeree M, et al. (2007) Fatty acid synthesis is essential for survival of Cryptococcus neoformans and a potential fungicidal target. Antimicrob Agents Chemother 51(10):3537-45 PMID:17698629
- Feddersen S, et al. (2007) Transcriptional regulation of phospholipid biosynthesis is linked to fatty acid metabolism by an acyl-CoA-binding-protein-dependent mechanism in Saccharomyces cerevisiae. Biochem J 407(2):219-30 PMID:17593018
- Leibundgut M, et al. (2007) Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase. Science 316(5822):288-90 PMID:17431182
- Hardwidge PR, et al. (2006) Proteomic analysis of the binding partners to enteropathogenic Escherichia coli virulence proteins expressed in Saccharomyces cerevisiae. Proteomics 6(7):2174-9 PMID:16552782
- Jesch SA, et al. (2006) Multiple endoplasmic reticulum-to-nucleus signaling pathways coordinate phospholipid metabolism with gene expression by distinct mechanisms. J Biol Chem 281(33):24070-83 PMID:16777852
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Serviene E, et al. (2006) Screening of the yeast yTHC collection identifies essential host factors affecting tombusvirus RNA recombination. J Virol 80(3):1231-41 PMID:16415000
- Snoek IS and Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393-403 PMID:16630279
- Tagwerker C, et al. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5(4):737-48 PMID:16432255
- Gruhler A, et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4(3):310-27 PMID:15665377
- Aritomi K, et al. (2004) Self-cloning yeast strains containing novel FAS2 mutations produce a higher amount of ethyl caproate in Japanese sake. Biosci Biotechnol Biochem 68(1):206-14 PMID:14745185
- Baxter SM, et al. (2004) Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteomics 3(3):209-25 PMID:14645503
- Ichimura T, et al. (2004) Transcriptomic and proteomic analysis of a 14-3-3 gene-deficient yeast. Biochemistry 43(20):6149-58 PMID:15147199
- Fomenko DE and Gladyshev VN (2003) Identity and functions of CxxC-derived motifs. Biochemistry 42(38):11214-25 PMID:14503871
- Furukawa K, et al. (2003) Increased ethyl caproate production by inositol limitation in Saccharomyces cerevisiae. J Biosci Bioeng 95(5):448-54 PMID:16233438
- Laakso JA, et al. (2003) CT2108A and B: New fatty acid synthase inhibitors as antifungal agents. J Nat Prod 66(8):1041-6 PMID:12932120
- Rubin-Bejerano I, et al. (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100(19):11007-12 PMID:12958213
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Zhang W, et al. (2003) Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide. J Ind Microbiol Biotechnol 30(1):57-69 PMID:12545388
- Fomenko DE and Gladyshev VN (2002) CxxS: fold-independent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase function. Protein Sci 11(10):2285-96 PMID:12237451
- Akada R, et al. (2001) Detection of a point mutation in FAS2 gene of sake yeast strains by allele-specific PCR amplification. J Biosci Bioeng 92(2):189-92 PMID:16233083
- Kajiwara S, et al. (2001) Cloning of a fatty acid synthase component FAS1 gene from Saccharomyces kluyveri and its functional complementation of S. cerevisiae fas1 mutant. Yeast 18(14):1339-45 PMID:11571758
- Radivoyevitch T (2001) Sphingoid base metabolism in yeast: mapping gene expression patterns into qualitative metabolite time course predictions. Comp Funct Genomics 2(5):289-94 PMID:18629242
- Cabiscol E, et al. (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275(35):27393-8 PMID:10852912
- Tvrdik P, et al. (2000) Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol 149(3):707-18 PMID:10791983
- Akada R, et al. (1999) Construction of recombinant sake yeast containing a dominant FAS2 mutation without extraneous sequences by a two-step gene replacement protocol. J Biosci Bioeng 87(1):43-8 PMID:16232423
- Choi JY and Martin CE (1999) The Saccharomyces cerevisiae FAT1 gene encodes an acyl-CoA synthetase that is required for maintenance of very long chain fatty acid levels. J Biol Chem 274(8):4671-83 PMID:9988704
- Beeler T, et al. (1998) The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Delta mutant. J Biol Chem 273(46):30688-94 PMID:9804843
- Niwa H, et al. (1998) Cloning of the fatty acid synthetase beta subunit from fission yeast, coexpression with the alpha subunit, and purification of the intact multifunctional enzyme complex. Protein Expr Purif 13(3):403-13 PMID:9693066
- Stuible HP, et al. (1998) A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein. J Biol Chem 273(35):22334-9 PMID:9712852
- Hiesinger M, et al. (1997) The acetyl-CoA synthetase gene ACS2 of the yeast Saccharomyces cerevisiae is coregulated with structural genes of fatty acid biosynthesis by the transcriptional activators Ino2p and Ino4p. FEBS Lett 415(1):16-20 PMID:9326360
- Stuible HP, et al. (1997) Identification, isolation and biochemical characterization of a phosphopantetheine:protein transferase that activates the two type-I fatty acid synthases of Brevibacterium ammoniagenes. Eur J Biochem 248(2):481-7 PMID:9346306
- Kupfer R, et al. (1996) Construction of the complete rat fatty acid synthase cDNA and its expression in Saccharomyces cerevisiae. Curr Genet 29(3):219-26 PMID:8595667
- Saitoh S, et al. (1996) Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase. J Cell Biol 134(4):949-61 PMID:8769419
- Southard SB and Cihlar RL (1995) Analysis and expression of the Candida albicans FAS2 gene. Gene 156(1):133-8 PMID:7737507
- Chirala SS, et al. (1994) Analysis of FAS3/ACC regulatory region of Saccharomyces cerevisiae: identification of a functional UASINO and sequences responsible for fatty acid mediated repression. Nucleic Acids Res 22(3):412-8 PMID:8127678
- Johnson DR, et al. (1994) Suppressors of nmtl-181, a conditional lethal allele of the Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase gene, reveal proteins involved in regulating protein N-myristoylation. Proc Natl Acad Sci U S A 91(21):10158-62 PMID:7937855
- Käslan E and Heyer WD (1994) Schizosaccharomyces pombe fatty acid synthase mediates DNA strand exchange in vitro. J Biol Chem 269(19):14103-10 PMID:8188691
- Meurer G, et al. (1992) Molecular structure of the multifunctional fatty acid synthetase gene of Brevibacterium ammoniagenes: its sequence of catalytic domains is formally consistent with a head-to-tail fusion of the two yeast genes FAS1 and FAS2. Mol Gen Genet 232(1):106-16 PMID:1552898
- Siebenlist U, et al. (1990) Mapping of the trifunctional fatty acid synthetase gene FAS2 on chromosome XVI of Saccharomyces cerevisiae. Yeast 6(5):411-5 PMID:2220075
- Kauppinen S, et al. (1988) beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun 53(6):357-70 PMID:3076376
- Schweizer E, et al. (1988) Genetic control of Yarrowia lipolytica fatty acid synthetase biosynthesis and function. J Basic Microbiol 28(5):283-92 PMID:3230512
- Wiesner P, et al. (1988) Isolation and sequence analysis of the fatty acid synthetase FAS2 gene from Penicillium patulum. Eur J Biochem 177(1):69-79 PMID:3053172
- Hori T, et al. (1987) Possible involvement of acetyl coenzyme A carboxylase as well as fatty acid synthetase in the temperature-controlled synthesis of fatty acids in Saccharomyces cerevisiae. J Biochem 101(4):949-56 PMID:2886496
- Tomoda H, et al. (1984) Cerulenin resistance in a cerulenin-producing fungus. III. Studies on active-site peptides of fatty acid synthetase from Cephalosporium caerulens. J Biochem 95(6):1712-23 PMID:6540772
- Stoops JK and Wakil SJ (1981) The yeast fatty acid synthetase. Structure-function relationship and the role of the active cysteine-SH and pantetheine-SH. J Biol Chem 256(16):8364-70 PMID:7021548
- Mishina M, et al. (1980) Yeast mutants defective in acetyl-coenzyme A carboxylase and biotin: apocarboxylase ligase. Eur J Biochem 111(1):79-87 PMID:6108218
- Okuyama H, et al. (1979) Regulation by temperature of the chain length of fatty acids in yeast. J Biol Chem 254(24):12281-4 PMID:387785
- Sedgwick B and Cornforth JW (1977) The biosynthesis of long-chain fatty acids. Stereochemical differentiation in the enzymic incorporation of chiral acetates. Eur J Biochem 75(2):465-79 PMID:18345
- Sedgwick B, et al. (1977) The biosynthesis of long-chain fatty acids. Incorporation of radioactivity from stereospecifically tritiated malonyl thiol esters, and the stereochemistry of the acetyl-CoA carboxylase reaction. Eur J Biochem 75(2):481-95 PMID:18346
- Seyama Y, et al. (1977) Origin of hydrogen atoms in the fatty acids synthesized with yeast fatty acid synthetase. J Biochem 82(5):1325-9 PMID:338601
- Yein F and Brown OR (1977) Comparative inactivation of yeast fatty acid synthetase component enzymes by 100 atmospheres of oxygen. Biochim Biophys Acta 486(3):421-8 PMID:322721
- Kresze GB, et al. (1976) Localization of the central and peripheral SH-groups on the same polypeptide chain of yeast fatty acid synthetase. Biochem Biophys Res Commun 69(4):893-9 PMID:776182
- Kühn L, et al. (1972) Gene linkage and gene-enzyme relations in the fatty-acid-synthetase system of Saccharomyces cerevisiae. Eur J Biochem 24(3):492-7 PMID:4550850
- Schweizer E, et al. (1971) A new gene cluster in yeast: the fatty acid synthetase system. Hoppe Seylers Z Physiol Chem 352(3):377-84 PMID:5550958
- White HB, et al. (1971) Pyridine nucleotide requirements of fatty acid synthetases. J Biol Chem 246(15):4751-4 PMID:4397855
- Schweizer E and Bolling H (1970) A Saccharomyces cerevisiae mutant defective in saturated fatty acid biosynthesis. Proc Natl Acad Sci U S A 67(2):660-6 PMID:4943177
- Rasmussen RK and Klein HP (1968) Activation of fatty acid synthesis in cell-free extracts of Saccharomyces cerevisiae. J Bacteriol 95(1):157-61 PMID:5636813
Reviews
No reviews curated.
Download References (.nbib)
- Kobalter S, et al. (2025) Engineering yeast for tailored fatty acid profiles. Appl Microbiol Biotechnol 109(1):101 PMID:40263140
- Wang Z, et al. (2023) Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol 14:1294182 PMID:38274755
- Jiang W, et al. (2022) Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 8(5) PMID:35628683
- Muratovska N, et al. (2022) Towards engineered yeast as production platform for capsaicinoids. Biotechnol Adv 59:107989 PMID:35623491
- Negoro H and Ishida H (2022) Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Res 22(1) PMID:36370450
- Salvador López JM, et al. (2022) Oleaginous yeasts: Time to rethink the definition? Yeast 39(11-12):553-606 PMID:36366783
- Delma FZ, et al. (2021) Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J Fungi (Basel) 7(11) PMID:34829198
- Kainth AS, et al. (2021) Primordial super-enhancers: heat shock-induced chromatin organization in yeast. Trends Cell Biol 31(10):801-813 PMID:34001402
- Simpson-Lavy K and Kupiec M (2021) Noise buffering by biomolecular condensates in glucose sensing. Curr Opin Cell Biol 69:1-6 PMID:33388622
- Krishnan A, et al. (2020) Biosynthesis of Fatty Alcohols in Engineered Microbial Cell Factories: Advances and Limitations. Front Bioeng Biotechnol 8:610936 PMID:33344437
- Kwiatek JM, et al. (2020) Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 1865(1):158434 PMID:30910690
- Lacerda MP, et al. (2020) The Model System Saccharomyces cerevisiae Versus Emerging Non-Model Yeasts for the Production of Biofuels. Life (Basel) 10(11) PMID:33233378
- Mendes Ferreira A and Mendes-Faia A (2020) The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 9(9) PMID:32899297
- Wang M, et al. (2020) Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Front Bioeng Biotechnol 8:594081 PMID:33178680
- Cordente AG, et al. (2019) Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Appl Microbiol Biotechnol 103(11):4325-4336 PMID:31020380
- Holt S, et al. (2019) The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 43(3):193-222 PMID:30445501
- Panni S (2019) Phospho-peptide binding domains in S. cerevisiae model organism. Biochimie 163:117-127 PMID:31194995
- Henne WM and Hariri H (2018) Endoplasmic Reticulum-Vacuole Contact Sites "Bloom" With Stress-Induced Lipid Droplets. Contact (Thousand Oaks) 1 PMID:30112463
- Herbst DA, et al. (2018) The architectures of iterative type I PKS and FAS. Nat Prod Rep 35(10):1046-1069 PMID:30137093
- Mitrofanova D, et al. (2018) Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae. Front Biosci (Landmark Ed) 23(6):1166-1194 PMID:28930594
- Veri AO, et al. (2018) Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 18(5) PMID:29788061
- Zhang Y, et al. (2018) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons. Biotechnol Bioeng 115(9):2139-2147 PMID:29873064
- Fakas S (2017) Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 17(3):292-302 PMID:32624775
- Fernandez-Moya R and Da Silva NA (2017) Engineering Saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products. FEMS Yeast Res 17(7) PMID:28961899
- Santomartino R, et al. (2017) Three, two, one yeast fatty acid desaturases: regulation and function. World J Microbiol Biotechnol 33(5):89 PMID:28390014
- Arlia-Ciommo A, et al. (2016) A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 7(5):5204-25 PMID:26636650
- Fillet S and Adrio JL (2016) Microbial production of fatty alcohols. World J Microbiol Biotechnol 32(9):152 PMID:27465852
- Nagy PD, et al. (2016) Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses. Viruses 8(3):68 PMID:26950140
- Sheng J and Feng X (2015) Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6:554 PMID:26106371
- Tang X, et al. (2015) Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metab Eng Commun 2:58-66 PMID:34150509
- Wang CW (2015) Lipid droplet dynamics in budding yeast. Cell Mol Life Sci 72(14):2677-95 PMID:25894691
- Garay LA, et al. (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62(13):2709-27 PMID:24628496
- Henry SA, et al. (2014) The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids 180:23-43 PMID:24418527
- Klug L and Daum G (2014) Yeast lipid metabolism at a glance. FEMS Yeast Res 14(3):369-88 PMID:24520995
- Koch B, et al. (2014) Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 38(5):892-915 PMID:24597968
- Montefusco DJ, et al. (2014) The yeast sphingolipid signaling landscape. Chem Phys Lipids 177:26-40 PMID:24220500
- Kitagaki H and Kitamoto K (2013) Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives. Annu Rev Food Sci Technol 4:215-35 PMID:23464572
- de Kroon AI, et al. (2013) Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 52(4):374-94 PMID:23631861
- Cordente AG, et al. (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96(3):601-18 PMID:22940803
- Henry SA, et al. (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190(2):317-49 PMID:22345606
- Kosa M and Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29(2):53-61 PMID:21146236
- Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285(21):15663-7 PMID:20231294
- Maier T, et al. (2010) Structure and function of eukaryotic fatty acid synthases. Q Rev Biophys 43(3):373-422 PMID:20731893
- Nielsen J (2009) Systems biology of lipid metabolism: from yeast to human. FEBS Lett 583(24):3905-13 PMID:19854183
- Leibundgut M, et al. (2008) The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 18(6):714-25 PMID:18948193
- Nagy PD (2008) Yeast as a model host to explore plant virus-host interactions. Annu Rev Phytopathol 46:217-42 PMID:18422427
- Byers DM and Gong H (2007) Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem Cell Biol 85(6):649-62 PMID:18059524
- Kolter T (2007) The fatty acid factory of yeasts. Angew Chem Int Ed Engl 46(36):6772-5 PMID:17691094
- Tehlivets O, et al. (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771(3):255-70 PMID:16950653
- Johanson T, et al. (2005) Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases. FEMS Yeast Res 5(6-7):513-25 PMID:15780652
- Schweizer E and Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68(3):501-17, table of contents PMID:15353567
- Howe AG and McMaster CR (2001) Regulation of vesicle trafficking, transcription, and meiosis: lessons learned from yeast regarding the disparate biologies of phosphatidylcholine. Biochim Biophys Acta 1534(2-3):65-77 PMID:11786293
- Hettema EH and Tabak HF (2000) Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim Biophys Acta 1486(1):18-27 PMID:10856710
- Dickson RC and Lester RL (1999) Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1438(3):305-21 PMID:10366774
- Daum G, et al. (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14(16):1471-510 PMID:9885152
- Paltauf F, et al. (1992) "Regulation and compartmentalization of lipid synthesis in yeast." Pp. 415-500 in The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, edited by Jones EW, Pringle JR and Broach JR. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
- Gordon JI, et al. (1991) Protein N-myristoylation. J Biol Chem 266(14):8647-50 PMID:2026581
- Wakil SJ, et al. (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52:537-79 PMID:6137188
- Lynen F (1980) On the structure of fatty acid synthetase of yeast. Eur J Biochem 112(3):431-42 PMID:7007046
- Schweizer E, et al. (1978) Fatty acid biosynthesis in yeast. Mol Cell Biochem 21(2):95-107 PMID:31559
- Lynen F (1969) Yeast fatty acid synthase Methods Enzymol 14:17-33
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Fichtlscherer F, et al. (2000) A novel function of yeast fatty acid synthase. Subunit alpha is capable of self-pantetheinylation. Eur J Biochem 267(9):2666-71 PMID:10785388
- Schüller HJ, et al. (1992) Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components. Eur J Biochem 203(3):607-14 PMID:1735446
- Stoops JK and Wakil SJ (1978) The isolation of the two subunits of yeast fatty acid synthetase. Biochem Biophys Res Commun 84(1):225-31 PMID:365179
- Qureshi AA, et al. (1976) Subunits of fatty acid synthetase complexes. Comparative study of enzyme activities and properties of the half-molecular weight nonidentical subunits of fatty acid synthetase complexes obtained from rat, human, and chicken liver and yeast. Arch Biochem Biophys 177(2):364-78 PMID:65153
- Knobling A, et al. (1975) Malonyl and palmityl transferase-less mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem 56(2):359-67 PMID:1100391
- Klein HP, et al. (1967) Fatty acid synthetase of Saccharomyces cerevisiae. J Bacteriol 93(6):1966-71 PMID:6025308
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Fischer M, et al. (2020) Analysis of the co-translational assembly of the fungal fatty acid synthase (FAS). Sci Rep 10(1):895 PMID:31964902
- Tamura H, et al. (2015) Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity. Biosci Biotechnol Biochem 79(7):1191-9 PMID:25787154
- Makanae K, et al. (2013) Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res 23(2):300-11 PMID:23275495
- Daum G, et al. (1999) Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast 15(7):601-14 PMID:10341423
- Inokoshi J, et al. (1994) Cerulenin-resistant mutants of Saccharomyces cerevisiae with an altered fatty acid synthase gene. Mol Gen Genet 244(1):90-6 PMID:8041367
- Schüller HJ, et al. (1992) Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components. Eur J Biochem 203(3):607-14 PMID:1735446
- Knobling A and Schweizer E (1975) Temperature-sensitive mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem 59(2):415-21 PMID:1107031
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Andrade Latino A and Biggins S (2025) Analysis of a cancer-associated mutation in the budding yeast Nuf2 kinetochore protein. MicroPubl Biol 2025 PMID:40161439
- Lee J, et al. (2025) Acetic acid-induced stress granules function as scaffolding complexes for Hog1 activation by Pbs2. J Cell Biol 224(5) PMID:40067148
- Casler JC, et al. (2024) Mitochondria-ER-PM contacts regulate mitochondrial division and PI(4)P distribution. J Cell Biol 223(9) PMID:38781029
- Cruz VE, et al. (2024) The DEAD-box ATPase Dbp10/DDX54 initiates peptidyl transferase center formation during 60S ribosome biogenesis. Nat Commun 15(1):3296 PMID:38632236
- Jang HS, et al. (2024) The ubiquitin-proteasome system degrades fatty acid synthase under nitrogen starvation when autophagy is dysfunctional in Saccharomyces cerevisiae. Biochem Biophys Res Commun 733:150423 PMID:39053108
- Jiang L, et al. (2024) Identification of the Beta Subunit Fas1p of Fatty Acid Synthetase as an Interacting Partner of Yeast Calcium/Calmodulin-Dependent Protein Kinase Cmk2p Through Mass Spectrometry Analysis. Appl Biochem Biotechnol 196(10):6836-6848 PMID:38411936
- Kofler L, et al. (2024) The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 15(1):7511 PMID:39209816
- Kohler V, et al. (2024) Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 15(1):315 PMID:38182580
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Ali A, et al. (2023) Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 25(11):1691-1703 PMID:37845327
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Courtin B, et al. (2023) Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MicroPubl Biol 2023 PMID:37746059
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Scutenaire J, et al. (2023) The S. cerevisiae m6A-reader Pho92 promotes timely meiotic recombination by controlling key methylated transcripts. Nucleic Acids Res 51(2):517-535 PMID:35934316
- Singh K, et al. (2023) Reconstruction of a fatty acid synthesis cycle from acyl carrier protein and cofactor structural snapshots. Cell 186(23):5054-5067.e16 PMID:37949058
- Yeter-Alat H, et al. (2023) The DEAD-Box RNA Helicase Ded1 Is Associated with Translating Ribosomes. Genes (Basel) 14(8) PMID:37628617
- Barkova A, et al. (2022) A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 13(1):26 PMID:36401307
- Khan MM, et al. (2022) Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. EMBO J 41(3):e109360 PMID:34918374
- Lehner MH, et al. (2022) Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 41(4):111536 PMID:36288698
- Feder ZA, et al. (2021) Subcellular localization of the J-protein Sis1 regulates the heat shock response. J Cell Biol 220(1) PMID:33326013
- Su XB, et al. (2021) SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J Cell Biol 220(7) PMID:33929514
- Buck TM, et al. (2020) The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation. Mol Cell Proteomics 19(11):1896-1909 PMID:32868373
- Eyboulet F, et al. (2020) The deubiquitylase Ubp15 couples transcription to mRNA export. Elife 9 PMID:33226341
- Gutierrez-Escribano P, et al. (2020) Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction. Mol Cell 80(6):1039-1054.e6 PMID:33301732
- Tomioka Y, et al. (2020) TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. J Cell Biol 219(7) PMID:32453403
- Girstmair H, et al. (2019) The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range. Nat Commun 10(1):3626 PMID:31399574
- Rössler I, et al. (2019) Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res 47(13):6984-7002 PMID:31062022
- Shrestha A, et al. (2019) The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discov 5:6 PMID:30675380
- Zhou D, et al. (2019) Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate. Protein Cell 10(2):120-130 PMID:29557065
- Hariri H, et al. (2018) Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep 19(1):57-72 PMID:29146766
- MacGilvray ME, et al. (2018) Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 13(5):e1006088 PMID:29738528
- Oliete-Calvo P, et al. (2018) A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 19(11) PMID:30249596
- Serratore ND, et al. (2018) A Novel Sterol-Signaling Pathway Governs Azole Antifungal Drug Resistance and Hypoxic Gene Repression in Saccharomyces cerevisiae. Genetics 208(3):1037-1055 PMID:29263028
- Cho T, et al. (2017) Coupling of a voltage-gated Ca2+ channel homologue with a plasma membrane H+ -ATPase in yeast. Genes Cells 22(1):94-104 PMID:27935186
- Damodaren N, et al. (2017) Def1 interacts with TFIIH and modulates RNA polymerase II transcription. Proc Natl Acad Sci U S A 114(50):13230-13235 PMID:29180430
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Speldewinde SH, et al. (2017) Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation. PLoS Genet 13(4):e1006708 PMID:28369054
- Sturm M, et al. (2017) Interdependent action of KH domain proteins Krr1 and Dim2 drive the 40S platform assembly. Nat Commun 8(1):2213 PMID:29263326
- Aviram N, et al. (2016) The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540(7631):134-138 PMID:27905431
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Delaveau T, et al. (2016) Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae. Nucleic Acids Res 44(18):8826-8841 PMID:27580715
- Hübscher V, et al. (2016) The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae. Nucleic Acids Res 44(12):5629-45 PMID:27001512
- Lakshminarasimhan M, et al. (2016) Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components. Mol Cell Proteomics 15(3):960-74 PMID:26831523
- Sung MK, et al. (2016) A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. Elife 5 PMID:27552055
- van Leeuwen J, et al. (2016) Exploring genetic suppression interactions on a global scale. Science 354(6312) PMID:27811238
- Cary GA, et al. (2015) Proteomic Analysis of Dhh1 Complexes Reveals a Role for Hsp40 Chaperone Ydj1 in Yeast P-Body Assembly. G3 (Bethesda) 5(11):2497-511 PMID:26392412
- Nicastro R, et al. (2015) Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae. J Biol Chem 290(41):24715-26 PMID:26309257
- Samra N, et al. (2015) The elongation factor eEF3 (Yef3) interacts with mRNA in a translation independent manner. BMC Mol Biol 16:17 PMID:26404137
- Scazzari M, et al. (2015) Quality control of a cytoplasmic protein complex: chaperone motors and the ubiquitin-proteasome system govern the fate of orphan fatty acid synthase subunit Fas2 of yeast. J Biol Chem 290(8):4677-4687 PMID:25564609
- Shpilka T, et al. (2015) Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proc Natl Acad Sci U S A 112(5):1434-9 PMID:25605918
- Bretes H, et al. (2014) Sumoylation of the THO complex regulates the biogenesis of a subset of mRNPs. Nucleic Acids Res 42(8):5043-58 PMID:24500206
- Galello F, et al. (2014) Interacting proteins of protein kinase A regulatory subunit in Saccharomyces cerevisiae. J Proteomics 109:261-75 PMID:25065647
- Kamata K, et al. (2014) The N-terminus and Tudor domains of Sgf29 are important for its heterochromatin boundary formation function. J Biochem 155(3):159-71 PMID:24307402
- Kurat CF, et al. (2014) Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proc Natl Acad Sci U S A 111(39):14124-9 PMID:25228766
- Babiano R, et al. (2013) Yeast ribosomal protein L7 and its homologue Rlp7 are simultaneously present at distinct sites on pre-60S ribosomal particles. Nucleic Acids Res 41(20):9461-70 PMID:23945946
- Freeberg MA, et al. (2013) Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 14(2):R13 PMID:23409723
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Qiu J, et al. (2013) Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154(3):596-608 PMID:23911324
- Snider J, et al. (2013) Mapping the functional yeast ABC transporter interactome. Nat Chem Biol 9(9):565-72 PMID:23831759
- Sung MK, et al. (2013) Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast. Genome Res 23(4):736-46 PMID:23403034
- Surma MA, et al. (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519-30 PMID:23891562
- Babu M, et al. (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585-9 PMID:22940862
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Panasenko OO and Collart MA (2011) Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol Cell Biol 31(8):1610-23 PMID:21321079
- Panni S, et al. (2011) Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae and H. sapiens. Proteomics 11(1):128-43 PMID:21182200
- Ren L, et al. (2011) Systematic two-hybrid and comparative proteomic analyses reveal novel yeast pre-mRNA splicing factors connected to Prp19. PLoS One 6(2):e16719 PMID:21386897
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Gipson P, et al. (2010) Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci U S A 107(20):9164-9 PMID:20231485
- Kaake RM, et al. (2010) Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J Proteome Res 9(4):2016-29 PMID:20170199
- Ossareh-Nazari B, et al. (2010) Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 11(7):548-54 PMID:20508643
- Ranjitkar P, et al. (2010) An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40(3):455-64 PMID:21070971
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Gong Y, et al. (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275 PMID:19536198
- Baranes-Bachar K, et al. (2008) New interacting partners of the F-box protein Ufo1 of yeast. Yeast 25(10):733-43 PMID:18949821
- Guerrero C, et al. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A 105(36):13333-8 PMID:18757749
- Johansson P, et al. (2008) Inhibition of the fungal fatty acid synthase type I multienzyme complex. Proc Natl Acad Sci U S A 105(35):12803-8 PMID:18725634
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Furukawa K, et al. (2003) Increased ethyl caproate production by inositol limitation in Saccharomyces cerevisiae. J Biosci Bioeng 95(5):448-54 PMID:16233438
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Beeler T, et al. (1998) The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Delta mutant. J Biol Chem 273(46):30688-94 PMID:9804843
- Brody S, et al. (1997) Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae. FEBS Lett 408(2):217-20 PMID:9187370
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Download References (.nbib)
- Schüller HJ, et al. (1992) Regulatory gene INO4 of yeast phospholipid biosynthesis is positively autoregulated and functions as a transactivator of fatty acid synthase genes FAS1 and FAS2 from Saccharomyces cerevisiae. Nucleic Acids Res 20(22):5955-61 PMID:1461729
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Bhagwat NR, et al. (2021) SUMO is a pervasive regulator of meiosis. Elife 10 PMID:33502312
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Back S, et al. (2019) Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress. J Proteome Res 18(1):309-318 PMID:30489083
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Weinert BT, et al. (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4(4):842-51 PMID:23954790
- Henriksen P, et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510-22 PMID:22865919
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
- Reinders J, et al. (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6(11):1896-906 PMID:17761666
- Gruhler A, et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4(3):310-27 PMID:15665377
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Forster DT, et al. (2022) BIONIC: biological network integration using convolutions. Nat Methods 19(10):1250-1261 PMID:36192463
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Lickwar CR, et al. (2012) Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484(7393):251-5 PMID:22498630
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Snoek IS and Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393-403 PMID:16630279
- Altmann K and Westermann B (2005) Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 16(11):5410-7 PMID:16135527
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549