Literature Help
PCL8 / YPL219W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Tutaj H, et al. (2019) Gene overexpression screen for chromosome instability in yeast primarily identifies cell cycle progression genes. Curr Genet 65(2):483-492 PMID:30244280
- Bar-Yosef H, et al. (2017) Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 7(1):5692 PMID:28720834
- Fang Z, et al. (2017) Overexpression of OLE1 Enhances Cytoplasmic Membrane Stability and Confers Resistance to Cadmium in Saccharomyces cerevisiae. Appl Environ Microbiol 83(1) PMID:27793829
- McCartney RR, et al. (2014) Genetic analysis of resistance and sensitivity to 2-deoxyglucose in Saccharomyces cerevisiae. Genetics 198(2):635-46 PMID:25116136
- McLaughlin JE, et al. (2009) A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106(51):21883-8 PMID:20007368
- Ralser M, et al. (2008) A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc Natl Acad Sci U S A 105(46):17807-11 PMID:19004802
- Wilson WA, et al. (2004) Increased glycogen storage in yeast results in less branched glycogen. Biochem Biophys Res Commun 320(2):416-23 PMID:15219844
- Tan YS, et al. (2003) Pho85 phosphorylates the Glc7 protein phosphatase regulator Glc8 in vivo. J Biol Chem 278(1):147-53 PMID:12407105
- Huang D, et al. (2002) Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol Cell Biol 22(14):5076-88 PMID:12077337
- Wilson WA, et al. (2002) Analysis of respiratory mutants reveals new aspects of the control of glycogen accumulation by the cyclin-dependent protein kinase Pho85p. FEBS Lett 515(1-3):104-8 PMID:11943203
- Wang Z, et al. (2001) The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 506(3):277-80 PMID:11602261
- Huang D, et al. (1998) Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 18(6):3289-99 PMID:9584169
- Measday V, et al. (1997) A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 17(3):1212-23 PMID:9032248
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Paolillo V, et al. (2018) Cyclins in aspergilli: Phylogenetic and functional analyses of group I cyclins. Stud Mycol 91:1-22 PMID:30104814
- Varland S, et al. (2018) N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae. Mol Cell Proteomics 17(12):2309-2323 PMID:30150368
- Soria PS, et al. (2014) Functional divergence for every paralog. Mol Biol Evol 31(4):984-92 PMID:24451325
- Ma M and Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 11:660 PMID:21106074
- Wilson WA, et al. (2010) The subcellular localization of yeast glycogen synthase is dependent upon glycogen content. Can J Microbiol 56(5):408-20 PMID:20555403
- Enyenihi AH and Saunders WS (2003) Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163(1):47-54 PMID:12586695
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Wang Z, et al. (2001) The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 506(3):277-80 PMID:11602261
- Huang D, et al. (1998) Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 18(6):3289-99 PMID:9584169
- Measday V, et al. (1997) A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 17(3):1212-23 PMID:9032248
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Bar-Yosef H, et al. (2017) Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 7(1):5692 PMID:28720834
- McCartney RR, et al. (2014) Genetic analysis of resistance and sensitivity to 2-deoxyglucose in Saccharomyces cerevisiae. Genetics 198(2):635-46 PMID:25116136
- McLaughlin JE, et al. (2009) A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106(51):21883-8 PMID:20007368
- Ralser M, et al. (2008) A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc Natl Acad Sci U S A 105(46):17807-11 PMID:19004802
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Nakajima T, et al. (2020) Cyclin-dependent kinase Pho85p and its cyclins are involved in replicative lifespan through multiple pathways in yeast. FEBS Lett 594(7):1166-1175 PMID:31797348
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Shulist K, et al. (2017) Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment. Sci Rep 7(1):11398 PMID:28900268
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Truman AW, et al. (2012) CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell 151(6):1308-18 PMID:23217712
- Mitchell L, et al. (2011) Regulation of septin dynamics by the Saccharomyces cerevisiae lysine acetyltransferase NuA4. PLoS One 6(10):e25336 PMID:21984913
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Michelot A, et al. (2010) Reconstitution and protein composition analysis of endocytic actin patches. Curr Biol 20(21):1890-9 PMID:21035341
- Fiedler D, et al. (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136(5):952-63 PMID:19269370
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Tan YS, et al. (2003) Pho85 phosphorylates the Glc7 protein phosphatase regulator Glc8 in vivo. J Biol Chem 278(1):147-53 PMID:12407105
- Wilson WA, et al. (2002) Analysis of respiratory mutants reveals new aspects of the control of glycogen accumulation by the cyclin-dependent protein kinase Pho85p. FEBS Lett 515(1-3):104-8 PMID:11943203
- Ito T, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569-74 PMID:11283351
- Wang Z, et al. (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21(17):5742-52 PMID:11486014
- Uetz P, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623-7 PMID:10688190
- Measday V, et al. (1997) A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 17(3):1212-23 PMID:9032248
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
- Molin M, et al. (2020) Protein kinase A controls yeast growth in visible light. BMC Biol 18(1):168 PMID:33198745
- Tutaj H, et al. (2019) Gene overexpression screen for chromosome instability in yeast primarily identifies cell cycle progression genes. Curr Genet 65(2):483-492 PMID:30244280
- Campos SE, et al. (2018) Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast. Aging Cell 17(3):e12749 PMID:29575540
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Gaytán BD, et al. (2013) A genome-wide screen identifies yeast genes required for tolerance to technical toxaphene, an organochlorinated pesticide mixture. PLoS One 8(11):e81253 PMID:24260565
- Samanfar B, et al. (2013) Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae. Mol Biosyst 9(6):1351-9 PMID:23467670
- Tun NM, et al. (2013) Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 5(8):1068-75 PMID:23832094
- Douglas AC, et al. (2012) Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2(10):1279-89 PMID:23050238
- O'Connor ST, et al. (2012) Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front Genet 3:316 PMID:23403841
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Shi Y, et al. (2011) Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Mol Biol Cell 22(21):4093-107 PMID:21880895
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Alamgir M, et al. (2010) Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol 10:6 PMID:20691087
- McLaughlin JE, et al. (2009) A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106(51):21883-8 PMID:20007368
- Yoshikawa K, et al. (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):32-44 PMID:19054128
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Enyenihi AH and Saunders WS (2003) Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163(1):47-54 PMID:12586695
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549