Literature Help
UIP4 / YPL186C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Deolal P, et al. (2022) Uip4p modulates nuclear pore complex function in Saccharomyces cerevisiae. Nucleus 13(1):79-93 PMID:35171083
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Ottosson LG, et al. (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1635-47 PMID:20675578
- Reinders J, et al. (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6(11):1896-906 PMID:17761666
- Takahashi Y, et al. (2000) Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J Biochem 128(5):723-5 PMID:11056382
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Ohkuni K, et al. (2018) SUMO-Targeted Ubiquitin Ligases (STUbLs) Reduce the Toxicity and Abnormal Transcriptional Activity Associated With a Mutant, Aggregation-Prone Fragment of Huntingtin. Front Genet 9:379 PMID:30279700
- Hou J, et al. (2014) Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Res 14(3):481-94 PMID:24237754
- Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50 PMID:24769239
- Zhang N, et al. (2009) Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast. Microbiology (Reading) 155(Pt 5):1690-1698 PMID:19383711
- Zahedi RP, et al. (2006) Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 17(3):1436-50 PMID:16407407
- Millson SH, et al. (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4(5):849-60 PMID:15879519
- Daran-Lapujade P, et al. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125-38 PMID:14630934
- O'Rourke SM and Herskowitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15(2):532-42 PMID:14595107
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Deolal P, et al. (2022) Uip4p modulates nuclear pore complex function in Saccharomyces cerevisiae. Nucleus 13(1):79-93 PMID:35171083
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Zahedi RP, et al. (2006) Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 17(3):1436-50 PMID:16407407
- Takahashi Y, et al. (2000) Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J Biochem 128(5):723-5 PMID:11056382
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Filali-Mouncef Y, et al. (2024) An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast Saccharomyces cerevisiae. Autophagy 20(10):2323-2337 PMID:38958087
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Shulist K, et al. (2017) Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment. Sci Rep 7(1):11398 PMID:28900268
- Yofe I, et al. (2017) Pex35 is a regulator of peroxisome abundance. J Cell Sci 130(4):791-804 PMID:28049721
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Atencio D, et al. (2014) The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization. G3 (Bethesda) 4(3):523-37 PMID:24470217
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- Schlecht U, et al. (2012) Multiplex assay for condition-dependent changes in protein-protein interactions. Proc Natl Acad Sci U S A 109(23):9213-8 PMID:22615397
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
- Reinders J, et al. (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6(11):1896-906 PMID:17761666
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Songdech P, et al. (2024) Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 24 PMID:38331422
- Schulze Y, et al. (2023) Chemical-genomic profiling identifies genes that protect yeast from aluminium, gallium, and indium toxicity. Metallomics 15(6) PMID:37193668
- Alfatah M, et al. (2019) Chemical-genetic interaction landscape of mono-(2-ethylhexyl)-phthalate using chemogenomic profiling in yeast. Chemosphere 228:219-231 PMID:31029968
- Choy JS, et al. (2013) Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability. Mol Biol Cell 24(17):2753-63 PMID:23825022
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- O'Connor ST, et al. (2012) Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front Genet 3:316 PMID:23403841
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Arita A, et al. (2009) A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae. BMC Genomics 10:524 PMID:19917080
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Stevenson LF, et al. (2001) A large-scale overexpression screen in Saccharomyces cerevisiae identifies previously uncharacterized cell cycle genes. Proc Natl Acad Sci U S A 98(7):3946-51 PMID:11274415