Literature Help
ATG40 / YOR152C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Ginevskaia T, et al. (2024) Comprehensive analysis of non-selective and selective autophagy in yeast atg mutants and characterization of autophagic activity in the absence of the Atg8 conjugation system. J Biochem 176(3):217-227 PMID:38843068
- Daraghmi MM, et al. (2023) Macro-ER-phagy receptors Atg39p and Atg40p confer resistance to aminoglycoside hygromycin B in S. cerevisiae. MicroPubl Biol 2023 PMID:36818312
- Folger A, et al. (2023) Neurodegenerative disease-associated inclusion bodies are cleared by selective autophagy in budding yeast. Autophagy Rep 2(1) PMID:37680383
- Liu D, et al. (2022) ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits. Proc Natl Acad Sci U S A 119(6) PMID:35101986
- Waite KA, et al. (2022) Proteaphagy is specifically regulated and requires factors dispensable for general autophagy. J Biol Chem 298(1):101494 PMID:34919962
- Wei F, et al. (2022) Mechanism of ER stress-mediated ER-phagy by CdTe-QDs in yeast cells. Toxicol Lett 365:36-45 PMID:35640768
- Otto GM, et al. (2021) Programmed cortical ER collapse drives selective ER degradation and inheritance in yeast meiosis. J Cell Biol 220(12) PMID:34661602
- Tasnin MN, et al. (2021) The vacuole controls nucleolar dynamics and micronucleophagy via the NVJ. Biochem Biophys Res Commun 550:158-165 PMID:33706099
- Chen S, et al. (2020) Vps13 is required for the packaging of the ER into autophagosomes during ER-phagy. Proc Natl Acad Sci U S A 117(31):18530-18539 PMID:32690699
- Lipatova Z, et al. (2020) Characterization of constitutive ER-phagy of excess membrane proteins. PLoS Genet 16(12):e1009255 PMID:33275594
- Mizuno T, et al. (2020) Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response. PLoS Genet 16(9):e1009053 PMID:32986716
- Mochida K and Nakatogawa H (2020) Atg8-mediated super-assembly of Atg40 induces local ER remodeling in reticulophagy. Autophagy 16(12):2299-2300 PMID:33043769
- Mochida K, et al. (2020) Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat Commun 11(1):3306 PMID:32620754
- Tomioka Y, et al. (2020) TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. J Cell Biol 219(7) PMID:32453403
- Zhang Y, et al. (2020) DeepPhagy: a deep learning framework for quantitatively measuring autophagy activity in Saccharomyces cerevisiae. Autophagy 16(4):626-640 PMID:31204567
- Cui Y, et al. (2019) A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365(6448):53-60 PMID:31273116
- Iwama R and Ohsumi Y (2019) Analysis of autophagy activated during changes in carbon source availability in yeast cells. J Biol Chem 294(14):5590-5603 PMID:30755486
- Chen S, et al. (2018) ER-phagy requires Lnp1, a protein that stabilizes rearrangements of the ER network. Proc Natl Acad Sci U S A 115(27):E6237-E6244 PMID:29915089
- Onishi M, et al. (2018) The ER membrane insertase Get1/2 is required for efficient mitophagy in yeast. Biochem Biophys Res Commun 503(1):14-20 PMID:29673596
- Xu X and Okamoto K (2018) The Nem1-Spo7 protein phosphatase complex is required for efficient mitophagy in yeast. Biochem Biophys Res Commun 496(1):51-57 PMID:29305265
- Akdoğan E, et al. (2016) Reduced Glucose Sensation Can Increase the Fitness of Saccharomyces cerevisiae Lacking Mitochondrial DNA. PLoS One 11(1):e0146511 PMID:26751567
- Mochida K, et al. (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522(7556):359-62 PMID:26040717
- Dhar R, et al. (2013) Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation. Mol Biol Evol 30(3):573-88 PMID:23125229
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Terashima H, et al. (2002) Sequence-based approach for identification of cell wall proteins in Saccharomyces cerevisiae. Curr Genet 40(5):311-6 PMID:11935221
- Grava S, et al. (2000) Functional analysis of six genes from chromosomes XIV and XV of Saccharomyces cerevisiae reveals YOR145c as an essential gene and YNL059c/ARP5 as a strain-dependent essential gene encoding nuclear proteins. Yeast 16(11):1025-33 PMID:10923024
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Tasnin MN, et al. (2025) ESCRT mediates micronucleophagy and macronucleophagy in yeast. Biochem Biophys Res Commun 742:151102 PMID:39642706
- Kang N, et al. (2024) General autophagy-dependent and -independent lipophagic processes collaborate to regulate the overall level of lipophagy in yeast. Autophagy 20(7):1523-1536 PMID:38425021
- Li Z and Nakatogawa H (2024) Methods to Monitor Nucleophagy in Yeast. Methods Mol Biol 2845:15-25 PMID:39115654
- Liu D, et al. (2024) Different ER-plasma membrane tethers play opposing roles in autophagy of the cortical ER. Proc Natl Acad Sci U S A 121(24):e2321991121 PMID:38838012
- Fukuda T, et al. (2023) Hva22, a REEP family protein in fission yeast, promotes reticulophagy in collaboration with a receptor protein. Autophagy 19(10):2657-2667 PMID:37191320
- Yin Z, et al. (2023) Bidirectional roles of the Ccr4-Not complex in regulating autophagy before and after nitrogen starvation. Autophagy 19(2):415-425 PMID:35167422
- Zou CX, et al. (2023) The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast. PLoS Biol 21(11):e3002372 PMID:37939137
- Otto GM and Brar GA (2022) Developmentally regulated selective autophagy determines ER inheritance by gametes. Autophagy 18(7):1732-1733 PMID:35220897
- Schäfer JA, et al. (2020) ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast. EMBO J 39(2):e102586 PMID:31802527
- Wang Q, et al. (2019) Independent losses and duplications of autophagy-related genes in fungal tree of life. Environ Microbiol 21(1):226-243 PMID:30346649
- Liu Y and Okamoto K (2018) The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast. Biochem Biophys Res Commun 502(1):76-83 PMID:29787763
- Rahman MA, et al. (2018) The Nem1/Spo7-Pah1/lipin axis is required for autophagy induction after TORC1 inactivation. FEBS J 285(10):1840-1860 PMID:29604183
- Gómez-Sánchez R, et al. (2017) Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae. Methods Enzymol 588:323-365 PMID:28237109
- Tun NM, et al. (2013) Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 5(8):1068-75 PMID:23832094
- Woo DK, et al. (2009) Multiple pathways of mitochondrial-nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. Biochim Biophys Acta 1789(2):135-45 PMID:18977319
- Lehner KR, et al. (2007) Ninety-six haploid yeast strains with individual disruptions of open reading frames between YOR097C and YOR192C, constructed for the Saccharomyces genome deletion project, have an additional mutation in the mismatch repair gene MSH3. Genetics 177(3):1951-3 PMID:17947417
- Ohkuni K, et al. (2003) Genome-wide expression analysis of NAP1 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 306(1):5-9 PMID:12788058
- Devaux F, et al. (2001) An artificial transcription activator mimics the genome-wide properties of the yeast Pdr1 transcription factor. EMBO Rep 2(6):493-8 PMID:11415981
- Bordonné R, et al. (1997) Analysis of a 35.6 kb region on the right arm of Saccharomyces cerevisiae chromosome XV. Yeast 13(1):73-83 PMID:9046089
Reviews
No reviews curated.
Download References (.nbib)
- Noda NN (2024) Structural view on autophagosome formation. FEBS Lett 598(1):84-106 PMID:37758522
- Boyle E and Wilfling F (2023) Autophagy as a caretaker of nuclear integrity. FEBS Lett 597(22):2728-2738 PMID:37567863
- Rudinskiy M and Molinari M (2023) ER-to-lysosome-associated degradation in a nutshell: mammalian, yeast, and plant ER-phagy as induced by misfolded proteins. FEBS Lett 597(15):1928-1945 PMID:37259628
- Fairman G and Ouimet M (2022) Lipophagy pathways in yeast are controlled by their distinct modes of induction. Yeast 39(8):429-439 PMID:35652813
- Sing TL, et al. (2022) Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 56:89-112 PMID:35878627
- Rehman NU, et al. (2021) Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants (Basel) 10(11) PMID:34829607
- Nakatogawa H (2020) Autophagic degradation of the endoplasmic reticulum. Proc Jpn Acad Ser B Phys Biol Sci 96(1):1-9 PMID:31932525
- Papandreou ME and Tavernarakis N (2020) Nucleophagy mediators and mechanisms. Prog Mol Biol Transl Sci 172:1-14 PMID:32620238
- Kirkin V and Rogov VV (2019) A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Mol Cell 76(2):268-285 PMID:31585693
- Koch B and Yu HG (2019) Regulation of inner nuclear membrane associated protein degradation. Nucleus 10(1):169-180 PMID:31313624
- Fregno I and Molinari M (2018) Endoplasmic reticulum turnover: ER-phagy and other flavors in selective and non-selective ER clearance. F1000Res 7:454 PMID:29744037
- Grumati P, et al. (2018) ER-phagy at a glance. J Cell Sci 131(17) PMID:30177506
- Loi M, et al. (2018) Eat it right: ER-phagy and recovER-phagy. Biochem Soc Trans 46(3):699-706 PMID:29802216
- Nakamura S and Izumi M (2018) Regulation of Chlorophagy during Photoinhibition and Senescence: Lessons from Mitophagy. Plant Cell Physiol 59(6):1135-1143 PMID:29767769
- Anding AL and Baehrecke EH (2017) Cleaning House: Selective Autophagy of Organelles. Dev Cell 41(1):10-22 PMID:28399394
- Kuma A, et al. (2017) Autophagy-monitoring and autophagy-deficient mice. Autophagy 13(10):1619-1628 PMID:28820286
- Torggler R, et al. (2017) Assays to Monitor Autophagy in Saccharomyces cerevisiae. Cells 6(3) PMID:28703742
- Nakatogawa H (2016) Eating the ER and the nucleus for survival under starvation conditions. Mol Cell Oncol 3(2):e1073416 PMID:27308592
- Popelka H and Klionsky DJ (2015) Post-translationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 282(18):3474-88 PMID:26108642
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Daraghmi MM, et al. (2023) Macro-ER-phagy receptors Atg39p and Atg40p confer resistance to aminoglycoside hygromycin B in S. cerevisiae. MicroPubl Biol 2023 PMID:36818312
- Zhang Y, et al. (2020) DeepPhagy: a deep learning framework for quantitatively measuring autophagy activity in Saccharomyces cerevisiae. Autophagy 16(4):626-640 PMID:31204567
- Mochida K, et al. (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522(7556):359-62 PMID:26040717
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Liu D, et al. (2024) Different ER-plasma membrane tethers play opposing roles in autophagy of the cortical ER. Proc Natl Acad Sci U S A 121(24):e2321991121 PMID:38838012
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Onishi M, et al. (2023) The GET pathway serves to activate Atg32-mediated mitophagy by ER targeting of the Ppg1-Far complex. Life Sci Alliance 6(4) PMID:36697253
- Yao W, et al. (2023) TOR-mediated Ypt1 phosphorylation regulates autophagy initiation complex assembly. EMBO J 42(19):e112814 PMID:37635626
- Liu D, et al. (2022) ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits. Proc Natl Acad Sci U S A 119(6) PMID:35101986
- Mizuno T, et al. (2020) Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response. PLoS Genet 16(9):e1009053 PMID:32986716
- Mochida K and Nakatogawa H (2020) Atg8-mediated super-assembly of Atg40 induces local ER remodeling in reticulophagy. Autophagy 16(12):2299-2300 PMID:33043769
- Mochida K, et al. (2020) Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat Commun 11(1):3306 PMID:32620754
- Tomioka Y, et al. (2020) TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. J Cell Biol 219(7) PMID:32453403
- Cui Y, et al. (2019) A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365(6448):53-60 PMID:31273116
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Mochida K, et al. (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522(7556):359-62 PMID:26040717
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Johansson MJ, et al. (2007) Association of yeast Upf1p with direct substrates of the NMD pathway. Proc Natl Acad Sci U S A 104(52):20872-7 PMID:18087042
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Songdech P, et al. (2024) Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 24 PMID:38331422
- Chen S, et al. (2020) Vps13 is required for the packaging of the ER into autophagosomes during ER-phagy. Proc Natl Acad Sci U S A 117(31):18530-18539 PMID:32690699
- Guan M, et al. (2020) Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 69:104998 PMID:32919014
- Bin-Umer MA, et al. (2014) Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci U S A 111(32):11798-803 PMID:25071194
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Troppens DM, et al. (2013) Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 13(3):322-34 PMID:23445507
- Tun NM, et al. (2013) Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 5(8):1068-75 PMID:23832094
- Lickwar CR, et al. (2012) Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484(7393):251-5 PMID:22498630
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Servienė E, et al. (2012) Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. PLoS One 7(12):e50779 PMID:23227207
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Westmoreland TJ, et al. (2009) Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae. PLoS One 4(6):e5830 PMID:19503795
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Butcher RA, et al. (2006) Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nat Chem Biol 2(2):103-9 PMID:16415861
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549