Literature Help
INP54 / YOL065C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Zhang T, et al. (2024) Coordinated inositide lipid-phosphatase activities of synaptojanin modulates actin cytoskeleton organization. Adv Biol Regul 91:101012 PMID:38220563
- Herianto S, et al. (2021) Systematic Analysis of Phosphatidylinositol-5-phosphate-Interacting Proteins Using Yeast Proteome Microarrays. Anal Chem 93(2):868-877 PMID:33302626
- Dabirian Y, et al. (2019) FadR-Based Biosensor-Assisted Screening for Genes Enhancing Fatty Acyl-CoA Pools in Saccharomyces cerevisiae. ACS Synth Biol 8(8):1788-1800 PMID:31314504
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Wiradjaja F, et al. (2001) The yeast inositol polyphosphate 5-phosphatase Inp54p localizes to the endoplasmic reticulum via a C-terminal hydrophobic anchoring tail: regulation of secretion from the endoplasmic reticulum. J Biol Chem 276(10):7643-53 PMID:11116155
- Raucher D, et al. (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100(2):221-8 PMID:10660045
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Geisberg JV, et al. (2014) Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 156(4):812-24 PMID:24529382
- Wiradjaja F, et al. (2007) Inactivation of the phosphoinositide phosphatases Sac1p and Inp54p leads to accumulation of phosphatidylinositol 4,5-bisphosphate on vacuole membranes and vacuolar fusion defects. J Biol Chem 282(22):16295-307 PMID:17392273
- Millson SH, et al. (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4(5):849-60 PMID:15879519
- Mitchell CA, et al. (2002) Inositol polyphosphate 5-phosphatases: lipid phosphatases with flair. IUBMB Life 53(1):25-36 PMID:12018404
- O'Malley CJ, et al. (2001) Mammalian inositol polyphosphate 5-phosphatase II can compensate for the absence of all three yeast Sac1-like-domain-containing 5-phosphatases. Biochem J 355(Pt 3):805-17 PMID:11311145
- Stolz LE, et al. (1998) Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics 148(4):1715-29 PMID:9560389
Reviews
No reviews curated.
Download References (.nbib)
- Liu ZL (2018) Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 102(13):5369-5390 PMID:29725719
- De Craene JO, et al. (2017) Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. Int J Mol Sci 18(3) PMID:28294977
- Kinoshita T and Fujita M (2016) Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res 57(1):6-24 PMID:26563290
- Delage E, et al. (2013) Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms. Prog Lipid Res 52(1):1-14 PMID:22981911
- Henry SA, et al. (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190(2):317-49 PMID:22345606
- Liu J, et al. (2010) Mechanochemical crosstalk during endocytic vesicle formation. Curr Opin Cell Biol 22(1):36-43 PMID:20022735
- Strahl T and Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771(3):353-404 PMID:17382260
- De Matteis M, et al. (2002) Phosphoinositides and the golgi complex. Curr Opin Cell Biol 14(4):434-47 PMID:12383794
- Odorizzi G, et al. (2000) Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25(5):229-35 PMID:10782093
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Wiradjaja F, et al. (2001) The yeast inositol polyphosphate 5-phosphatase Inp54p localizes to the endoplasmic reticulum via a C-terminal hydrophobic anchoring tail: regulation of secretion from the endoplasmic reticulum. J Biol Chem 276(10):7643-53 PMID:11116155
- Raucher D, et al. (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100(2):221-8 PMID:10660045
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Wiradjaja F, et al. (2001) The yeast inositol polyphosphate 5-phosphatase Inp54p localizes to the endoplasmic reticulum via a C-terminal hydrophobic anchoring tail: regulation of secretion from the endoplasmic reticulum. J Biol Chem 276(10):7643-53 PMID:11116155
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Bertgen L, et al. (2024) Distinct types of intramitochondrial protein aggregates protect mitochondria against proteotoxic stress. Cell Rep 43(4):114018 PMID:38551959
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Bayne RA, et al. (2022) Yeast Ssd1 is a non-enzymatic member of the RNase II family with an alternative RNA recognition site. Nucleic Acids Res 50(5):2923-2937 PMID:34302485
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Pereira F, et al. (2019) Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS One 14(1):e0211180 PMID:30682149
- Shyu P, et al. (2019) Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic ER-resident proteins. Sci Rep 9(1):8637 PMID:31201345
- Espinosa-Cantú A, et al. (2018) Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes. Genetics 208(1):419-431 PMID:29127264
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Schenk L, et al. (2012) La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA 18(3):449-61 PMID:22271760
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Aguilar PS, et al. (2010) A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct Mol Biol 17(7):901-8 PMID:20526336
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Beltrao P, et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7(6):e1000134 PMID:19547744
- Fiedler D, et al. (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136(5):952-63 PMID:19269370
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- Wiradjaja F, et al. (2007) Inactivation of the phosphoinositide phosphatases Sac1p and Inp54p leads to accumulation of phosphatidylinositol 4,5-bisphosphate on vacuole membranes and vacuolar fusion defects. J Biol Chem 282(22):16295-307 PMID:17392273
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Millson SH, et al. (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4(5):849-60 PMID:15879519
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
- Schuldiner M, et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3):507-19 PMID:16269340
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Campos SE, et al. (2018) Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast. Aging Cell 17(3):e12749 PMID:29575540
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Kapitzky L, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451 PMID:21179023
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Jin R, et al. (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19(1):284-96 PMID:17989363
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549