Literature Help
DBP6 / YNR038W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Ismail S, et al. (2022) Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Rep 39(1):110640 PMID:35385737
- Joret C, et al. (2018) The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. PLoS Genet 14(8):e1007597 PMID:30169518
- Greber BJ (2016) Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-electron microscopy. RNA 22(11):1643-1662 PMID:27875256
- Kachroo AH, et al. (2015) Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348(6237):921-5 PMID:25999509
- Rosado IV, et al. (2007) Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol Cell Biol 27(4):1207-21 PMID:17145778
- Bernstein KA, et al. (2006) Comprehensive mutational analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis. Mol Cell Biol 26(4):1195-208 PMID:16449635
- de la Cruz J, et al. (2004) The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae. Genetics 166(4):1687-99 PMID:15126390
- Daugeron MC, et al. (2001) Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p. RNA 7(9):1317-34 PMID:11565753
- Kressler D, et al. (1999) Synthetic lethality with conditional dbp6 alleles identifies rsa1p, a nucleoplasmic protein involved in the assembly of 60S ribosomal subunits. Mol Cell Biol 19(12):8633-45 PMID:10567587
- Kressler D, et al. (1998) Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol Cell Biol 18(4):1855-65 PMID:9528757
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Hamze H, et al. (2025) The snoRNP chaperone snR190 and the Npa1 complex form a macromolecular assembly required for 60S ribosomal subunit maturation. Nucleic Acids Res 53(5) PMID:40037705
- Bhutada P, et al. (2022) Rbp95 binds to 25S rRNA helix H95 and cooperates with the Npa1 complex during early pre-60S particle maturation. Nucleic Acids Res 50(17):10053-10077 PMID:36018804
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Fourati Z, et al. (2014) A highly conserved region essential for NMD in the Upf2 N-terminal domain. J Mol Biol 426(22):3689-3702 PMID:25277656
- Jayaswal V, et al. (2014) Mixture models of nucleotide sequence evolution that account for heterogeneity in the substitution process across sites and across lineages. Syst Biol 63(5):726-42 PMID:24927722
- Jakovljevic J, et al. (2012) Ribosomal proteins L7 and L8 function in concert with six A₃ assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. RNA 18(10):1805-22 PMID:22893726
- Gancarz BL, et al. (2011) Systematic identification of novel, essential host genes affecting bromovirus RNA replication. PLoS One 6(8):e23988 PMID:21915247
- Umate P, et al. (2010) Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73(4-5):449-65 PMID:20383562
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Wade CH, et al. (2006) The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast 23(4):293-306 PMID:16544271
- Lai LC, et al. (2005) Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol Cell Biol 25(10):4075-91 PMID:15870279
Reviews
No reviews curated.
Download References (.nbib)
- Vanden Broeck A and Klinge S (2024) Eukaryotic Ribosome Assembly. Annu Rev Biochem 93(1):189-210 PMID:38768392
- Dörner K, et al. (2023) Ribosome biogenesis factors-from names to functions. EMBO J 42(7):e112699 PMID:36762427
- Khreiss A, et al. (2023) Molecular functions of RNA helicases during ribosomal subunit assembly. Biol Chem 404(8-9):781-789 PMID:37233600
- Karbstein K (2022) Attacking a DEAD problem: The role of DEAD-box ATPases in ribosome assembly and beyond. Methods Enzymol 673:19-38 PMID:35965007
- Mitterer V and Pertschy B (2022) RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 19(1):781-810 PMID:35678541
- Moraleva AA, et al. (2022) Eukaryotic Ribosome Biogenesis: The 60S Subunit. Acta Naturae 14(2):39-49 PMID:35925480
- Liu Y and Imai R (2018) Function of Plant DExD/H-Box RNA Helicases Associated with Ribosomal RNA Biogenesis. Front Plant Sci 9:125 PMID:29472942
- Martin R, et al. (2013) DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 10(1):4-18 PMID:22922795
- Rodríguez-Galán O, et al. (2013) Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim Biophys Acta 1829(8):775-90 PMID:23357782
- Woolford JL and Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195(3):643-81 PMID:24190922
- Kressler D, et al. (2010) Driving ribosome assembly. Biochim Biophys Acta 1803(6):673-83 PMID:19879902
- Henras AK, et al. (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65(15):2334-59 PMID:18408888
- Linder P (2006) Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res 34(15):4168-80 PMID:16936318
- Dez C and Tollervey D (2004) Ribosome synthesis meets the cell cycle. Curr Opin Microbiol 7(6):631-7 PMID:15556036
- Granneman S and Baserga SJ (2004) Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296(1):43-50 PMID:15120992
- Fromont-Racine M, et al. (2003) Ribosome assembly in eukaryotes. Gene 313:17-42 PMID:12957375
- Kressler D, et al. (1999) Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 19(12):7897-912 PMID:10567516
- Venema J and Tollervey D (1999) Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 33:261-311 PMID:10690410
- de la Cruz J, et al. (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24(5):192-8 PMID:10322435
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Rosado IV, et al. (2007) Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol Cell Biol 27(4):1207-21 PMID:17145778
- de la Cruz J, et al. (2004) The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae. Genetics 166(4):1687-99 PMID:15126390
- de la Cruz J, et al. (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24(5):192-8 PMID:10322435
- Kressler D, et al. (1998) Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol Cell Biol 18(4):1855-65 PMID:9528757
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Bernstein KA, et al. (2006) Comprehensive mutational analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis. Mol Cell Biol 26(4):1195-208 PMID:16449635
- Daugeron MC, et al. (2001) Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p. RNA 7(9):1317-34 PMID:11565753
- Kressler D, et al. (1998) Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol Cell Biol 18(4):1855-65 PMID:9528757
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Casler JC, et al. (2024) Mitochondria-ER-PM contacts regulate mitochondrial division and PI(4)P distribution. J Cell Biol 223(9) PMID:38781029
- Kofler L, et al. (2024) The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 15(1):7511 PMID:39209816
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Khreiss A, et al. (2023) The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. Nucleic Acids Res 51(2):744-764 PMID:36610750
- LaPeruta AJ, et al. (2023) Yeast ribosome biogenesis factors Puf6 and Nog2 and ribosomal proteins uL2 and eL43 act in concert to facilitate the release of nascent large ribosomal subunits from the nucleolus. Nucleic Acids Res 51(20):11277-11290 PMID:37811893
- Meyer L, et al. (2023) eIF2A represses cell wall biogenesis gene expression in Saccharomyces cerevisiae. PLoS One 18(11):e0293228 PMID:38011112
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Smurova K, et al. (2023) Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 14(1):3172 PMID:37263996
- Bhutada P, et al. (2022) Rbp95 binds to 25S rRNA helix H95 and cooperates with the Npa1 complex during early pre-60S particle maturation. Nucleic Acids Res 50(17):10053-10077 PMID:36018804
- Ismail S, et al. (2022) Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Rep 39(1):110640 PMID:35385737
- Aquino GRR, et al. (2021) The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly. Nat Commun 12(1):6152 PMID:34686661
- Jaafar M, et al. (2021) Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat Commun 12(1):6153 PMID:34686656
- Su XB, et al. (2021) SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J Cell Biol 220(7) PMID:33929514
- Black JJ, et al. (2020) Bud23 promotes the final disassembly of the small subunit Processome in Saccharomyces cerevisiae. PLoS Genet 16(12):e1009215 PMID:33306676
- den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Cepeda LPP, et al. (2019) The ribosome assembly factor Nop53 controls association of the RNA exosome with pre-60S particles in yeast. J Biol Chem 294(50):19365-19380 PMID:31662437
- Pereira F, et al. (2019) Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS One 14(1):e0211180 PMID:30682149
- Black JJ, et al. (2018) Utp14 interaction with the small subunit processome. RNA 24(9):1214-1228 PMID:29925570
- Joret C, et al. (2018) The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. PLoS Genet 14(8):e1007597 PMID:30169518
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Shu S and Ye K (2018) Structural and functional analysis of ribosome assembly factor Efg1. Nucleic Acids Res 46(4):2096-2106 PMID:29361028
- Chymkowitch P, et al. (2017) TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity. Proc Natl Acad Sci U S A 114(5):1039-1044 PMID:28096404
- Gómez-Herreros F, et al. (2017) The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 45(16):9302-9318 PMID:28637236
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Sturm M, et al. (2017) Interdependent action of KH domain proteins Krr1 and Dim2 drive the 40S platform assembly. Nat Commun 8(1):2213 PMID:29263326
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Buser R, et al. (2016) The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress. PLoS Genet 12(2):e1005843 PMID:26849847
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Hill SM, et al. (2016) Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions. Cell Rep 16(3):826-38 PMID:27373154
- Kırlı K, et al. (2015) A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife 4 PMID:26673895
- McCann KL, et al. (2015) A protein interaction map of the LSU processome. Genes Dev 29(8):862-75 PMID:25877921
- Thoms M, et al. (2015) The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins. Cell 162(5):1029-38 PMID:26317469
- Fourati Z, et al. (2014) A highly conserved region essential for NMD in the Upf2 N-terminal domain. J Mol Biol 426(22):3689-3702 PMID:25277656
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Franzosa EA, et al. (2011) Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 6(11):e28211 PMID:22140548
- Schwer B, et al. (2011) Composition of yeast snRNPs and snoRNPs in the absence of trimethylguanosine caps reveals nuclear cap binding protein as a gained U1 component implicated in the cold-sensitivity of tgs1Δ cells. Nucleic Acids Res 39(15):6715-28 PMID:21558325
- Gong Y, et al. (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275 PMID:19536198
- Lin YY, et al. (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136(6):1073-84 PMID:19303850
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Strome ED, et al. (2008) Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability. Genetics 178(3):1193-207 PMID:18245329
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Wilmes GM, et al. (2008) A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 32(5):735-46 PMID:19061648
- Rosado IV, et al. (2007) Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol Cell Biol 27(4):1207-21 PMID:17145778
- Bernstein KA, et al. (2006) Comprehensive mutational analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis. Mol Cell Biol 26(4):1195-208 PMID:16449635
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- de la Cruz J, et al. (2004) The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae. Genetics 166(4):1687-99 PMID:15126390
- Dez C, et al. (2004) Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol Cell Biol 24(14):6324-37 PMID:15226434
- Daugeron MC, et al. (2001) Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p. RNA 7(9):1317-34 PMID:11565753
- Kressler D, et al. (1999) Synthetic lethality with conditional dbp6 alleles identifies rsa1p, a nucleoplasmic protein involved in the assembly of 60S ribosomal subunits. Mol Cell Biol 19(12):8633-45 PMID:10567587
- Daugeron MC and Linder P (1998) Dbp7p, a putative ATP-dependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly. RNA 4(5):566-81 PMID:9582098
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Chen YC, et al. (2018) Glucose intake hampers PKA-regulated HSP90 chaperone activity. Elife 7 PMID:30516470
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
Functional Complementation Annotations Literature
Paper(s) associated with one or more pieces of functional complementation annotations evidence in SGD.
No functional complementation annotations literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Forster DT, et al. (2022) BIONIC: biological network integration using convolutions. Nat Methods 19(10):1250-1261 PMID:36192463
- Fröhlich F, et al. (2015) The GARP complex is required for cellular sphingolipid homeostasis. Elife 4 PMID:26357016
- Salas-Santiago B and Lopes JM (2014) Saccharomyces cerevisiae essential genes with an Opi- phenotype. G3 (Bethesda) 4(4):761-7 PMID:24558266
- Huang Z, et al. (2013) A functional variomics tool for discovering drug-resistance genes and drug targets. Cell Rep 3(2):577-85 PMID:23416056
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Svensson JP, et al. (2011) Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance. BMC Syst Biol 5:157 PMID:21978764
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Ben-Aroya S, et al. (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 30(2):248-58 PMID:18439903
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549