Literature Help
HFA1 / YMR207C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Ravishankar A, et al. (2020) Mitochondrial metabolism is central for response and resistance of Saccharomyces cerevisiae to exposure to a glyphosate-based herbicide. Environ Pollut 262:114359 PMID:32443188
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Qin T, et al. (2014) Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network. Nucleic Acids Res 42(18):e138 PMID:25063300
- Suomi F, et al. (2014) Expression and evolution of the non-canonically translated yeast mitochondrial acetyl-CoA carboxylase Hfa1p. PLoS One 9(12):e114738 PMID:25503745
- Kursu VA, et al. (2013) Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae. Mol Microbiol 90(4):824-40 PMID:24102902
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Madsen KM, et al. (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6(3):e14763 PMID:21445244
- Schonauer MS, et al. (2008) Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria. Mol Cell Biol 28(21):6646-57 PMID:18779316
- Hoja U, et al. (2004) HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 279(21):21779-86 PMID:14761959
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Kearsey SE (1993) Identification of a Saccharomyces cerevisiae gene closely related to FAS3 (acetyl-CoA carboxylase). DNA Seq 4(1):69-70 PMID:7906156
- Lill U, et al. (1991) Inhibitors of metabolic reactions. Scope and limitation of acyl-CoA-analogue CoA-thioethers. Eur J Biochem 198(3):767-73 PMID:1675605
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Li Q, et al. (2024) Lysophospholipid acyltransferase-mediated formation of saturated glycerophospholipids maintained cell membrane integrity for hypoxic adaptation. FEBS J 291(14):3191-3210 PMID:38602252
- Wu C, et al. (2024) Antioxidant Dipeptides Enhance Osmotic Stress Tolerance by Regulating the Yeast Cell Wall and Membrane. J Agric Food Chem 72(8):4339-4347 PMID:38351620
- Fenech EJ, et al. (2023) A toolbox for systematic discovery of stable and transient protein interactors in baker's yeast. Mol Syst Biol 19(2):e11084 PMID:36651308
- Zhang Y, et al. (2023) Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production. Biotechnol Biofuels Bioprod 16(1):64 PMID:37031180
- He X, et al. (2021) Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 105(6):2597-2611 PMID:33646374
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Malina C, et al. (2021) Constraint-based modeling of yeast mitochondria reveals the dynamics of protein import and iron-sulfur cluster biogenesis. iScience 24(11):103294 PMID:34755100
- Yang Y, et al. (2019) Membrane Fluidity of Saccharomyces cerevisiae from Huangjiu (Chinese Rice Wine) Is Variably Regulated by OLE1 To Offset the Disruptive Effect of Ethanol. Appl Environ Microbiol 85(23) PMID:31540996
- Tian J, et al. (2017) The Toxic Effects of Tetrachlorobisphenol A in Saccharomyces cerevisiae Cells via Metabolic Interference. Sci Rep 7(1):2655 PMID:28572609
- Short MK, et al. (2012) The yeast magmas ortholog pam16 has an essential function in fermentative growth that involves sphingolipid metabolism. PLoS One 7(7):e39428 PMID:22808036
- Szklarczyk R and Huynen MA (2009) Expansion of the human mitochondrial proteome by intra- and inter-compartmental protein duplication. Genome Biol 10(11):R135 PMID:19930686
- Turunen O, et al. (2009) In silico evidence for functional specialization after genome duplication in yeast. FEMS Yeast Res 9(1):16-31 PMID:19133069
- Huthmacher C, et al. (2008) A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling. J Theor Biol 252(3):456-64 PMID:17988690
- Pirner HM and Stolz J (2006) Biotin sensing in Saccharomyces cerevisiae is mediated by a conserved DNA element and requires the activity of biotin-protein ligase. J Biol Chem 281(18):12381-9 PMID:16531611
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Carrau FM, et al. (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243(1):107-15 PMID:15668008
- Kellis M, et al. (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428(6983):617-24 PMID:15004568
- Lawrence CL, et al. (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24(8):3307-23 PMID:15060153
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Blandin G, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 4. The genome of Saccharomyces cerevisiae revisited. FEBS Lett 487(1):31-6 PMID:11152879
- Karlberg O, et al. (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17(3):170-87 PMID:11025528
Reviews
No reviews curated.
Download References (.nbib)
- Malina C, et al. (2018) Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res 18(5) PMID:29788060
- Garay LA, et al. (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62(13):2709-27 PMID:24628496
- Klug L and Daum G (2014) Yeast lipid metabolism at a glance. FEMS Yeast Res 14(3):369-88 PMID:24520995
- Koch B, et al. (2014) Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 38(5):892-915 PMID:24597968
- Henry SA, et al. (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190(2):317-49 PMID:22345606
- Hong KK and Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69(16):2671-90 PMID:22388689
- Hiltunen JK, et al. (2010) Mitochondrial fatty acid synthesis--an adopted set of enzymes making a pathway of major importance for the cellular metabolism. Prog Lipid Res 49(1):27-45 PMID:19686777
- Hiltunen JK, et al. (2009) Mitochondrial fatty acid synthesis type II: more than just fatty acids. J Biol Chem 284(14):9011-5 PMID:19028688
- Tehlivets O, et al. (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771(3):255-70 PMID:16950653
- Hiltunen JK, et al. (2005) Mitochondrial fatty acid synthesis and maintenance of respiratory competent mitochondria in yeast. Biochem Soc Trans 33(Pt 5):1162-5 PMID:16246072
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Hoja U, et al. (2004) HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 279(21):21779-86 PMID:14761959
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Kearsey SE (1993) Identification of a Saccharomyces cerevisiae gene closely related to FAS3 (acetyl-CoA carboxylase). DNA Seq 4(1):69-70 PMID:7906156
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Kociemba J, et al. (2024) Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 43(15):3256-3286 PMID:38886580
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Scutenaire J, et al. (2023) The S. cerevisiae m6A-reader Pho92 promotes timely meiotic recombination by controlling key methylated transcripts. Nucleic Acids Res 51(2):517-535 PMID:35934316
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Yang X, et al. (2022) The ubiquitin-proteasome system regulates meiotic chromosome organization. Proc Natl Acad Sci U S A 119(17):e2106902119 PMID:35439061
- Mönkemeyer L, et al. (2019) Chaperone Function of Hgh1 in the Biogenesis of Eukaryotic Elongation Factor 2. Mol Cell 74(1):88-100.e9 PMID:30876804
- Pereira F, et al. (2019) Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS One 14(1):e0211180 PMID:30682149
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Oliete-Calvo P, et al. (2018) A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 19(11) PMID:30249596
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Kyriakou D, et al. (2016) Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biol 14(1):106 PMID:27927215
- Srivas R, et al. (2016) A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy. Mol Cell 63(3):514-25 PMID:27453043
- Kershaw CJ, et al. (2015) Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p. Sci Rep 5:15518 PMID:26493364
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Usher J, et al. (2015) Utilising established SDL-screening methods as a tool for the functional genomic characterisation of model and non-model organisms. FEMS Yeast Res 15(8) PMID:26472754
- Voynova NS, et al. (2015) Saccharomyces cerevisiae Is Dependent on Vesicular Traffic between the Golgi Apparatus and the Vacuole When Inositolphosphorylceramide Synthase Aur1 Is Inactivated. Eukaryot Cell 14(12):1203-16 PMID:26432633
- Yahya G, et al. (2014) A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start. Mol Cell 53(1):115-26 PMID:24374311
- Niepel M, et al. (2013) The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol Biol Cell 24(24):3920-38 PMID:24152732
- Babu M, et al. (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585-9 PMID:22940862
- Louie RJ, et al. (2012) A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis. Genome Med 4(12):103 PMID:23270647
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Short MK, et al. (2012) The yeast magmas ortholog pam16 has an essential function in fermentative growth that involves sphingolipid metabolism. PLoS One 7(7):e39428 PMID:22808036
- Chang HY, et al. (2011) Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3 (Bethesda) 1(3):197-208 PMID:22384331
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Madsen KM, et al. (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6(3):e14763 PMID:21445244
- Scherrer T, et al. (2011) Defining potentially conserved RNA regulons of homologous zinc-finger RNA-binding proteins. Genome Biol 12(1):R3 PMID:21232131
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Ranjitkar P, et al. (2010) An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40(3):455-64 PMID:21070971
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Fiedler D, et al. (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136(5):952-63 PMID:19269370
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Fromont-Racine M, et al. (2000) Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17(2):95-110 PMID:10900456
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Harris A and Ünal E (2023) The transcriptional regulator Ume6 is a major driver of early gene expression during gametogenesis. Genetics 225(2) PMID:37431893
- Ogbede JU, et al. (2021) A genome-wide portrait of pervasive drug contaminants. Sci Rep 11(1):12487 PMID:34127714
- Yu R, et al. (2021) Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 12(1):1981 PMID:33790287
- Helsen J, et al. (2020) Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 37(10):2989-3002 PMID:32658971
- Stenger M, et al. (2020) Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae. Microb Cell 7(9):234-249 PMID:32904421
- Wilcox A, et al. (2020) Sulforaphane alters the acidification of the yeast vacuole. Microb Cell 7(5):129-138 PMID:32391394
- Zhao YY, et al. (2020) Genetic analysis of oxidative and endoplasmic reticulum stress responses induced by cobalt toxicity in budding yeast. Biochim Biophys Acta Gen Subj 1864(3):129516 PMID:31904504
- Campos SE, et al. (2018) Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast. Aging Cell 17(3):e12749 PMID:29575540
- Khurana V, et al. (2017) Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Syst 4(2):157-170.e14 PMID:28131822
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Hendry JA, et al. (2015) Leveraging DNA damage response signaling to identify yeast genes controlling genome stability. G3 (Bethesda) 5(5):997-1006 PMID:25721128
- Zhu J, et al. (2015) Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity. G3 (Bethesda) 5(6):1043-56 PMID:25823586
- Garay E, et al. (2014) High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet 10(2):e1004168 PMID:24586198
- Jarosz DF, et al. (2014) Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158(5):1083-1093 PMID:25171409
- Schlecht U, et al. (2014) A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system. BMC Genomics 15:263 PMID:24708151
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Gaytán BD, et al. (2013) Functional profiling discovers the dieldrin organochlorinated pesticide affects leucine availability in yeast. Toxicol Sci 132(2):347-58 PMID:23358190
- Marek A and Korona R (2013) Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 67(11):3077-86 PMID:24151994
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Vandenbosch D, et al. (2013) Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res 13(8):720-30 PMID:24034557
- Douglas AC, et al. (2012) Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2(10):1279-89 PMID:23050238
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Dos Santos SC and Sá-Correia I (2011) A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 286(5-6):333-46 PMID:21960436
- Hoon S, et al. (2011) A global perspective of the genetic basis for carbonyl stress resistance. G3 (Bethesda) 1(3):219-31 PMID:22384333
- Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49 PMID:20963216
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Cai H, et al. (2006) Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Genetics 172(3):1459-76 PMID:16361226
- Kawahata M, et al. (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924-36 PMID:16911514
- Lawrence CL, et al. (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24(8):3307-23 PMID:15060153
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Steinmetz LM, et al. (2002) Systematic screen for human disease genes in yeast. Nat Genet 31(4):400-4 PMID:12134146
- Wilson WA, et al. (2002) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1(3):232-42 PMID:12096123