Literature Help
ADH3 / YMR083W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- McGee TJ and Wolyniak MJ (2022) Educational/Professional Partnership in the Development of a Novel Strain of S-11 Saccharomyces cerevisiae Brewing Yeast. FASEB J 36 Suppl 1.
- Sengupta S, et al. (2022) Variation in glucose metabolism under acidified sodium nitrite mediated nitrosative stress in Saccharomyces cerevisiae. J Appl Microbiol 133(3):1660-1675 PMID:35702895
- Zeng L, et al. (2022) Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. World J Microbiol Biotechnol 38(2):34 PMID:34989900
- Ohashi Y, et al. (2021) Biosyntheses of geranic acid and citronellic acid from monoterpene alcohols by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 85(6):1530-1535 PMID:33713103
- van Dijk M, et al. (2021) RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. Biotechnol Biofuels 14(1):201 PMID:34654441
- Iranmanesh E, et al. (2020) Improving l-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering. J Biotechnol 308:27-34 PMID:31733223
- Lin W, et al. (2019) Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation. PLoS Pathog 15(10):e1008092 PMID:31648290
- Parapouli M, et al. (2019) Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes' activities with the produced flavour compounds. J Biol Res (Thessalon) 26:5 PMID:31406688
- Brown SR, et al. (2018) Design of Experiments Methodology to Build a Multifactorial Statistical Model Describing the Metabolic Interactions of Alcohol Dehydrogenase Isozymes in the Ethanol Biosynthetic Pathway of the Yeast Saccharomyces cerevisiae. ACS Synth Biol 7(7):1676-1684 PMID:29976056
- Eguchi Y, et al. (2018) Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins. Elife 7 PMID:30095406
- Nambu-Nishida Y, et al. (2018) Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation. J Biosci Bioeng 125(1):76-86 PMID:28869192
- Nomura W, et al. (2018) Toxicity of dihydroxyacetone is exerted through the formation of methylglyoxal in Saccharomyces cerevisiae: effects on actin polarity and nuclear division. Biochem J 475(16):2637-2652 PMID:30049894
- Tapia SM, et al. (2018) GPD1 and ADH3 Natural Variants Underlie Glycerol Yield Differences in Wine Fermentation. Front Microbiol 9:1460 PMID:30018610
- Chidi BS, et al. (2016) Identifying and assessing the impact of wine acid-related genes in yeast. Curr Genet 62(1):149-64 PMID:26040556
- González-Ramos D, et al. (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 9:173 PMID:27525042
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Yu AQ, et al. (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36-43 PMID:26721212
- Paget CM, et al. (2014) Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures. Mol Ecol 23(21):5241-57 PMID:25243355
- Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50 PMID:24769239
- Schleit J, et al. (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12(6):1050-61 PMID:23837470
- Ida Y, et al. (2012) Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 113(2):192-5 PMID:22033067
- Ng CY, et al. (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 11:68 PMID:22640729
- de Smidt O, et al. (2012) Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Res 12(1):33-47 PMID:22094012
- Barzegar A, et al. (2010) New model for polymerization of oligomeric alcohol dehydrogenases into nanoaggregates. Appl Biochem Biotechnol 160(4):1188-205 PMID:19444390
- Bird AJ, et al. (2006) Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts. EMBO J 25(24):5726-34 PMID:17139254
- Dickinson JR, et al. (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278(10):8028-34 PMID:12499363
- Foreman TM, et al. (2001) Effects of charged water-soluble polymers on the stability and activity of yeast alcohol dehydrogenase and subtilisin Carlsberg. Biotechnol Bioeng 76(3):241-6 PMID:11668460
- Rogniaux H, et al. (2001) Mass spectrometry as a novel approach to probe cooperativity in multimeric enzymatic systems. Anal Biochem 291(1):48-61 PMID:11262155
- Bakker BM, et al. (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182(17):4730-7 PMID:10940011
- Nikolova P and Ward OP (1992) Reductive biotransformation by wild type and mutant strains of Saccharomyces cerevisiae in aqueous-organic solvent biphasic systems. Biotechnol Bioeng 39(8):870-6 PMID:18601021
- Nikolova P and Ward OP (1991) Production of L-phenylacetyl carbinol by biotransformation: product and by-product formation and activities of the key enzymes in wild-type and ADH isoenzyme mutants of Saccharomyces cerevisiae. Biotechnol Bioeng 38(5):493-8 PMID:18604807
- Mooney DT, et al. (1990) Mutant alcohol dehydrogenase (ADH III) presequences that affect both in vitro mitochondrial import and in vitro processing by the matrix protease. Mol Cell Biol 10(6):2801-8 PMID:2188098
- Ganzhorn AJ, et al. (1987) Kinetic characterization of yeast alcohol dehydrogenases. Amino acid residue 294 and substrate specificity. J Biol Chem 262(8):3754-61 PMID:3546317
- Pilgrim D and Young ET (1987) Primary structure requirements for correct sorting of the yeast mitochondrial protein ADH III to the yeast mitochondrial matrix space. Mol Cell Biol 7(1):294-304 PMID:3550419
- van Loon AP and Young ET (1986) Intracellular sorting of alcohol dehydrogenase isoenzymes in yeast: a cytosolic location reflects absence of an amino-terminal targeting sequence for the mitochondrion. EMBO J 5(1):161-5 PMID:2937632
- van Loon AP, et al. (1986) The presequences of two imported mitochondrial proteins contain information for intracellular and intramitochondrial sorting. Cell 44(5):801-12 PMID:3004746
- Young ET and Pilgrim D (1985) Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 5(11):3024-34 PMID:2943982
- Wiesenfeld M, et al. (1975) Multiple forms of mitochondrial alcohol dehydrogenase in Saccharomyces cerevisiae. Biochim Biophys Acta 405(2):500-12 PMID:1101965
- HAYES JE and VELICK SF (1954) Yeast alcohol dehydrogenase: molecular weight, coenzyme binding, and reaction equilibria. J Biol Chem 207(1):225-44 PMID:13152098
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Bates A, et al. (2025) Protein thermal stability in the undergraduate biochemistry laboratory: Exploring protein thermal stability with yeast alcohol dehydrogenase. Biochem Mol Biol Educ 53(2):209-217 PMID:39797714
- Pinto J, et al. (2025) Exploring adaptation routes to cold temperatures in the Saccharomyces genus. PLoS Genet 21(2):e1011199 PMID:39970180
- Sooklim C, et al. (2025) Integrated omic analysis of a new flavor yeast strain in fermented rice milk. FEMS Yeast Res 25 PMID:40153366
- Xie D, et al. (2025) Regulation of fructose levels on carbon flow and metabolites in yeast during food fermentation. Food Sci Technol Int 31(1):69-82 PMID:37259509
- Pangestu R, et al. (2024) Comparative responses of flocculating and nonflocculating yeasts to cell density and chemical stress in lactic acid fermentation. Yeast 41(4):192-206 PMID:38081785
- Schäfer KJ, et al. (2024) Optimizing hexanoic acid biosynthesis in Saccharomyces cerevisiae for the de novo production of olivetolic acid. Biotechnol Biofuels Bioprod 17(1):141 PMID:39633477
- Molina-Menor E, et al. (2023) A 3D printed plastic frame deeply impacts yeast cell growth. Front Bioeng Biotechnol 11:1250667 PMID:37771573
- Yukawa T, et al. (2023) Enhanced production of 3,4-dihydroxybutyrate from xylose by engineered yeast via xylonate re-assimilation under alkaline condition. Biotechnol Bioeng 120(2):511-523 PMID:36321324
- Zhang X, et al. (2022) Combined roles of exporters in acetic acid tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod 15(1):67 PMID:35717394
- Aman Beshir J and Kebede M (2021) In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h. J Genet Eng Biotechnol 19(1):8 PMID:33428031
- Dong C, et al. (2021) Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 118(11):4269-4277 PMID:34273106
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Rasor BJ, et al. (2021) An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 12(1):5139 PMID:34446711
- Che Y, et al. (2020) Production of Methionol from 3-Methylthiopropionaldehyde by Catalysis of the Yeast Alcohol Dehydrogenase Adh4p. J Agric Food Chem 68(16):4650-4656 PMID:32233408
- Kuang X, et al. (2020) New insights into two yeast BDHs from the PDH subfamily as aldehyde reductases in context of detoxification of lignocellulosic aldehyde inhibitors. Appl Microbiol Biotechnol 104(15):6679-6692 PMID:32556414
- Lee YH, et al. (2020) Protection of Alcohol Dehydrogenase against Freeze-Thaw Stress by Ice-Binding Proteins Is Proportional to Their Ice Recrystallization Inhibition Property. Mar Drugs 18(12) PMID:33322085
- Sakihama Y, et al. (2019) Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci Rep 9(1):5319 PMID:30926897
- Tondini F, et al. (2019) Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. Int J Food Microbiol 294:42-49 PMID:30763906
- Ottone C, et al. (2018) Enhanced long-chain fatty alcohol oxidation by immobilization of alcohol dehydrogenase from S. cerevisiae. Appl Microbiol Biotechnol 102(1):237-247 PMID:29090341
- Paasch F, et al. (2018) Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. J Biol Chem 293(2):599-609 PMID:29183993
- Wang Y, et al. (2018) The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics 10(12):1755-1776 PMID:30358795
- Zhang X, et al. (2018) Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 102(16):7207-7217 PMID:29946930
- Baek SH, et al. (2017) Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Biotechnol J 12(10) PMID:28731533
- Franco-Duarte R, et al. (2017) Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. FEMS Yeast Res 17(6) PMID:28910984
- Liu J, et al. (2017) Synergistic Effect in Core Microbiota Associated with Sulfur Metabolism in Spontaneous Chinese Liquor Fermentation. Appl Environ Microbiol 83(24) PMID:28970229
- Gatter M, et al. (2016) Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica. Fungal Genet Biol 95:30-38 PMID:27486067
- Jin Z, et al. (2016) Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnol Bioeng 113(4):842-51 PMID:26461930
- Rodacka A (2016) The effect of radiation-induced reactive oxygen species (ROS) on the structural and functional properties of yeast alcohol dehydrogenase (YADH). Int J Radiat Biol 92(1):11-23 PMID:26571366
- Schifferdecker AJ, et al. (2016) Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 100(7):3219-31 PMID:26743658
- Wilcox AE, et al. (2016) Effects of Macromolecular Crowding on Alcohol Dehydrogenase Activity Are Substrate-Dependent. Biochemistry 55(25):3550-8 PMID:27283046
- Beauchamp J and Vieille C (2015) Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD. Bioengineered 6(2):106-10 PMID:25611453
- Masuo S, et al. (2015) Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol. Fungal Genet Biol 77:22-30 PMID:25797315
- Shakir M, et al. (2015) Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support. Int J Biol Macromol 72:1196-204 PMID:25450541
- Gatter M, et al. (2014) A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica. FEMS Yeast Res 14(6):858-72 PMID:24931727
- Hirasawa T, et al. (2014) Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction. Bioengineered 5(2):123-8 PMID:24247205
- Lv X, et al. (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128-36 PMID:25016205
- Ewald JC, et al. (2013) The integrated response of primary metabolites to gene deletions and the environment. Mol Biosyst 9(3):440-6 PMID:23340584
- Ida Y, et al. (2013) Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 97(11):4811-9 PMID:23435983
- Picotti P, et al. (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494(7436):266-70 PMID:23334424
- Sudar M, et al. (2013) Effect of different variables on the efficiency of the Baker's yeast cell disruption process to obtain alcohol dehydrogenase activity. Appl Biochem Biotechnol 169(3):1039-55 PMID:23299979
- Vidal EE, et al. (2013) Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation. Food Chem 138(1):701-8 PMID:23265543
- Wen N, et al. (2013) The kinetics behavior of the reduction of formaldehyde catalyzed by Alcohol Dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH. Appl Biochem Biotechnol 170(2):370-80 PMID:23529657
- Celton M, et al. (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14(4):366-79 PMID:22709677
- Dikicioglu D, et al. (2012) Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment. Mol Biosyst 8(6):1760-74 PMID:22491778
- Eliyahu E, et al. (2012) The protein chaperone Ssa1 affects mRNA localization to the mitochondria. FEBS Lett 586(1):64-9 PMID:22138184
- Hewitt VL, et al. (2012) A model system for mitochondrial biogenesis reveals evolutionary rewiring of protein import and membrane assembly pathways. Proc Natl Acad Sci U S A 109(49):E3358-66 PMID:23151513
- Hornung G, et al. (2012) Noise-mean relationship in mutated promoters. Genome Res 22(12):2409-17 PMID:22820945
- Hornung G, et al. (2012) Nucleosome organization affects the sensitivity of gene expression to promoter mutations. Mol Cell 46(3):362-8 PMID:22464732
- Papini M, et al. (2012) Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microb Cell Fact 11:136 PMID:23043429
- Postmus J, et al. (2012) Isoenzyme expression changes in response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast. FEMS Yeast Res 12(5):571-81 PMID:22548758
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Westman JO, et al. (2012) Proteomic analysis of the increased stress tolerance of saccharomyces cerevisiae encapsulated in liquid core alginate-chitosan capsules. PLoS One 7(11):e49335 PMID:23152898
- Canelas AB, et al. (2011) An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data. Metab Eng 13(3):294-306 PMID:21354323
- Carroll KM, et al. (2011) Absolute quantification of the glycolytic pathway in yeast: deployment of a complete QconCAT approach. Mol Cell Proteomics 10(12):M111.007633 PMID:21931151
- Guo K, et al. (2011) Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta 85(2):1174-9 PMID:21726755
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- Kaufmann A and Knop M (2011) Genomic promoter replacement cassettes to alter gene expression in the yeast Saccharomyces cerevisiae. Methods Mol Biol 765:275-94 PMID:21815098
- Kim IS, et al. (2011) Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. J Microbiol 49(5):816-23 PMID:22068500
- McDonagh B, et al. (2011) Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3). J Proteomics 74(11):2487-97 PMID:21565288
- Slavov N and Botstein D (2011) Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol Biol Cell 22(12):1997-2009 PMID:21525243
- Styger G, et al. (2011) Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 91(3):713-30 PMID:21547456
- Swainston N, et al. (2011) A QconCAT informatics pipeline for the analysis, visualization and sharing of absolute quantitative proteomics data. Proteomics 11(2):329-33 PMID:21204260
- Cassimjee KE, et al. (2010) Transaminations with isopropyl amine: equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem Commun (Camb) 46(30):5569-71 PMID:20461279
- Gallego O, et al. (2010) A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6:430 PMID:21119626
- Ma M and Liu LZ (2010) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 10:169 PMID:20537179
- Marino SM, et al. (2010) Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae. Biochemistry 49(35):7709-21 PMID:20698499
- Nakamura T, et al. (2010) Multicopy suppression of oxidant-sensitive eos1 mutation by IZH2 in Saccharomyces cerevisiae and the involvement of Eos1 in zinc homeostasis. FEMS Yeast Res 10(3):259-69 PMID:20146743
- Stanley D, et al. (2010) Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):231-9 PMID:20661734
- van Eunen K, et al. (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277(3):749-60 PMID:20067525
- Akerborg O, et al. (2009) Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A 106(14):5714-9 PMID:19299507
- Baerends RJ, et al. (2009) Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75(19):6055-61 PMID:19666729
- Kennedy CJ, et al. (2009) Systems-level engineering of nonfermentative metabolism in yeast. Genetics 183(1):385-97 PMID:19564482
- Pal S, et al. (2009) Activity of yeast alcohol dehydrogenases on benzyl alcohols and benzaldehydes: characterization of ADH1 from Saccharomyces carlsbergensis and transition state analysis. Chem Biol Interact 178(1-3):16-23 PMID:19022233
- Tong L, et al. (2009) Hydrolase regulates NAD+ metabolites and modulates cellular redox. J Biol Chem 284(17):11256-66 PMID:19251690
- Wu CY, et al. (2009) Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency. J Biol Chem 284(40):27544-56 PMID:19656949
- van Eunen K, et al. (2009) Time-dependent regulation analysis dissects shifts between metabolic and gene-expression regulation during nitrogen starvation in baker's yeast. FEBS J 276(19):5521-36 PMID:19691496
- Artemova NV, et al. (2008) Protein aggregates as depots for the release of biologically active compounds. Biochem Biophys Res Commun 377(2):595-599 PMID:18929533
- Claypool SM, et al. (2008) Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 182(5):937-50 PMID:18779372
- Ruiz A, et al. (2008) Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J Biol Chem 283(20):13923-33 PMID:18362157
- Solieri L, et al. (2008) Mitochondrial inheritance and fermentative : oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum. Yeast 25(7):485-500 PMID:18615860
- Ståhlberg A, et al. (2008) Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli. BMC Genomics 9:170 PMID:18412983
- van den Brink J, et al. (2008) Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. Appl Environ Microbiol 74(18):5710-23 PMID:18641162
- Kong DC, et al. (2007) [Simulation and analysis of ethanol concentration response to enzyme amount changes in Saccharomyces cerevisiae glycolysis pathway model]. Sheng Wu Gong Cheng Xue Bao 23(2):332-6 PMID:17460912
- Lertwattanasakul N, et al. (2007) Comparison of the gene expression patterns of alcohol dehydrogenase isozymes in the thermotolerant yeast Kluyveromyces marxianus and their physiological functions. Biosci Biotechnol Biochem 71(5):1170-82 PMID:17485854
- Minard KI, et al. (2007) Changes in disulfide bond content of proteins in a yeast strain lacking major sources of NADPH. Free Radic Biol Med 42(1):106-17 PMID:17157197
- Rautio JJ, et al. (2007) Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast 24(9):741-60 PMID:17605133
- Vemuri GN, et al. (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(7):2402-7 PMID:17287356
- Hassler BL and Worden RM (2006) Versatile bioelectronic interfaces based on heterotrifunctional linking molecules. Biosens Bioelectron 21(11):2146-54 PMID:16290125
- Kim IS, et al. (2006) Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. J Microbiol 44(5):492-501 PMID:17082742
- Mizuno A, et al. (2006) Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing. J Biosci Bioeng 101(1):31-7 PMID:16503288
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Park H, et al. (2005) Effects of pressure on deuterium isotope effects of yeast alcohol dehydrogenase using alternative substrates. Arch Biochem Biophys 433(1):335-40 PMID:15581588
- Abruzzi KC, et al. (2004) Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 23(13):2620-31 PMID:15192704
- Daran-Lapujade P, et al. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125-38 PMID:14630934
- Shuster A, et al. (2004) Alcohol-mediated haemolysis in yeast. Yeast 21(16):1335-42 PMID:15565638
- Smith MG, et al. (2004) Microbial synergy via an ethanol-triggered pathway. Mol Cell Biol 24(9):3874-84 PMID:15082781
- Jörnvall H, et al. (2003) Multiplicity of eukaryotic ADH and other MDR forms. Chem Biol Interact 143-144:255-61 PMID:12604211
- Riveros-Rosas H, et al. (2003) Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. Eur J Biochem 270(16):3309-34 PMID:12899689
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Modig T, et al. (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363(Pt 3):769-76 PMID:11964178
- Nordling E, et al. (2002) Differential multiplicity of MDR alcohol dehydrogenases: enzyme genes in the human genome versus those in organisms initially studied. Cell Mol Life Sci 59(6):1070-5 PMID:12169018
- Nordling E, et al. (2002) Medium-chain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur J Biochem 269(17):4267-76 PMID:12199705
- Jörnvall H, et al. (2001) Variations and constant patterns in eukaryotic MDR enzymes. Conclusions from novel structures and characterized genomes. Chem Biol Interact 130-132(1-3):491-8 PMID:11306070
- de Nobel H, et al. (2001) Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18(15):1413-28 PMID:11746603
- Bakker BM, et al. (2000) Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci U S A 97(5):2087-92 PMID:10681445
- González E, et al. (2000) Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J Biol Chem 275(46):35876-85 PMID:10938079
- Young ET, et al. (2000) Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Gene 245(2):299-309 PMID:10717481
- Jörnvall H, et al. (1999) SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett 445(2-3):261-4 PMID:10094468
- Persson B, et al. (1999) Bioinformatics in studies of SDR and MDR enzymes. Adv Exp Med Biol 463:373-7 PMID:10352708
- van den Berg MA, et al. (1998) Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism. Yeast 14(12):1089-104 PMID:9778795
- Guijo S, et al. (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and 'flor' film ageing of dry sherry-type wines. Yeast 13(2):101-17 PMID:9046092
- Murdanoto AP, et al. (1997) Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts. Appl Environ Microbiol 63(5):1715-20 PMID:9143107
- Dallet S and Legoy MD (1996) Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation. Biochim Biophys Acta 1294(1):15-24 PMID:8639709
- Kouprina N, et al. (1994) CHL12, a gene essential for the fidelity of chromosome transmission in the yeast Saccharomyces cerevisiae. Genetics 138(4):1067-79 PMID:7896091
- Ciriacy M, et al. (1991) Characterization of trans-acting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae. Curr Genet 20(6):441-8 PMID:1664298
- Saliola M, et al. (1991) Two genes encoding putative mitochondrial alcohol dehydrogenases are present in the yeast Kluyveromyces lactis. Yeast 7(4):391-400 PMID:1872030
- Drewke C, et al. (1990) Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J Bacteriol 172(7):3909-17 PMID:2193925
- Williamson VM and Paquin CE (1987) Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol Gen Genet 209(2):374-81 PMID:2823079
- Paquin CE and Williamson VM (1986) Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1. Mol Cell Biol 6(1):70-9 PMID:3023838
- Prakash D and Holzer H (1985) Effects of m-Cl-peroxy benzoic acid on glycolysis in Saccharomyces cerevisiae. Arch Microbiol 143(3):220-4 PMID:2937383
- Scopes RK, et al. (1981) Rapid purification of yeast alcohol dehydrogenase. Anal Biochem 118(2):284-5 PMID:7039412
- Eckfeldt JH and Light RT (1980) Kinetic ethylene glycol assay with use of yeast alcohol dehydrogenase. Clin Chem 26(9):1278-80 PMID:6994927
- Wiesenfeld M, et al. (1977) Inactivation and re-activation of mitochondrial alcohol dehydrogenase from baker's yeast [proceedings]. Biochem Soc Trans 5(4):1096-7 PMID:334592
- Nishiyama-Watanabe S (1976) Photodynamic action of thiopyronine on the respiration and fermentation in yeast. Int J Radiat Biol Relat Stud Phys Chem Med 30(6):501-9 PMID:794004
- Ciriacy M (1975) Genetics of Alcohol Dehydrogenase in Saccharomyces cerevisiae I. Isolation and genetic analysis of adh mutants Mutat Res 29:315-326
- König T, et al. (1975) Inhibition by quinaldate of dehydrogenases. Acta Biochim Biophys Acad Sci Hung 10(3):171-6 PMID:1108584
- Jones RC and Hough JS (1970) The effect of temperature on the metabolism of baker's yeast growing on continuous culture. J Gen Microbiol 60(1):107-16 PMID:4321211
- SILVERSTEIN E and BOYER PD (1964) EQUILIBRIUM REACTION RATES AND THE MECHANISMS OF LIVER AND YEAST ALCOHOL DEHYDROGENASE. J Biol Chem 239:3908-14 PMID:14257626
- HOCH FL, et al. (1958) The role of zinc in alcohol dehydrogenases. II. The kinetics of the instantaneous reversible inhibition of yeast alcohol dehydrogenase by 1,10-phenanthroline. J Biol Chem 232(1):453-64 PMID:13549433
- HOCH FL and VALLEE BL (1956) Kinetic studies on the rôle of zinc and diphosphopyridine nucleotide in the activity of yeast alcohol dehydrogenase. J Biol Chem 221(1):491-500 PMID:13345837
Reviews
No reviews curated.
Download References (.nbib)
- Le HG, et al. (2025) Synthetic biology strategies for sustainable bioplastic production by yeasts. J Microbiol 63(3):e2501022 PMID:40195837
- Melo NTM, et al. (2024) Just around the Corner: Advances in the Optimization of Yeasts and Filamentous Fungi for Lactic Acid Production. J Fungi (Basel) 10(3) PMID:38535215
- Roldán-López D, et al. (2024) The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 64(10):3059-3074 PMID:36222026
- Li L, et al. (2023) Quorum sensing: cell-to-cell communication in Saccharomyces cerevisiae. Front Microbiol 14:1250151 PMID:38075875
- Menegon YA, et al. (2022) How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr Genet 68(3-4):319-342 PMID:35362784
- Mitri S, et al. (2022) Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 11(1) PMID:35010235
- Mitsui R, et al. (2022) Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae. World J Microbiol Biotechnol 38(3):38 PMID:35018511
- Comitini F, et al. (2021) Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int J Mol Sci 22(14) PMID:34299371
- Li C, et al. (2021) Promising advancement in fermentative succinic acid production by yeast hosts. J Hazard Mater 401:123414 PMID:32763704
- Li S, et al. (2021) Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 325:83-90 PMID:33278463
- Chauhan NM and Mohan Karuppayil S (2020) Dual identities for various alcohols in two different yeasts. Mycology 12(1):25-38 PMID:33628606
- Eide DJ (2020) Transcription factors and transporters in zinc homeostasis: lessons learned from fungi. Crit Rev Biochem Mol Biol 55(1):88-110 PMID:32192376
- Cordente AG, et al. (2019) Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Appl Microbiol Biotechnol 103(11):4325-4336 PMID:31020380
- Holt S, et al. (2019) The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 43(3):193-222 PMID:30445501
- Varela J and Varela C (2019) Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr Opin Biotechnol 56:88-96 PMID:30390603
- Xiberras J, et al. (2019) Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 37(6):107378 PMID:30930107
- Bolognesi B and Lehner B (2018) Reaching the limit. Elife 7 PMID:30095407
- Querol A, et al. (2018) New Trends in the Uses of Yeasts in Oenology. Adv Food Nutr Res 85:177-210 PMID:29860974
- Wang H, et al. (2018) Functions of aldehyde reductases from Saccharomyces cerevisiae in detoxification of aldehyde inhibitors and their biotechnological applications. Appl Microbiol Biotechnol 102(24):10439-10456 PMID:30306200
- Zhang Y, et al. (2018) Biosynthesis of D-lactic acid from lignocellulosic biomass. Biotechnol Lett 40(8):1167-1179 PMID:29956044
- Dzialo MC, et al. (2017) Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 41(Supp_1):S95-S128 PMID:28830094
- Geng P, et al. (2017) Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 33(5):94 PMID:28405910
- Singh N, et al. (2017) Effect of zinc deprivation on the lipid metabolism of budding yeast. Curr Genet 63(6):977-982 PMID:28500379
- Sheng J and Feng X (2015) Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6:554 PMID:26106371
- Galdieri L, et al. (2014) Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot Cell 13(12):1472-83 PMID:25326522
- Pires EJ, et al. (2014) Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98(5):1937-49 PMID:24384752
- Sandström AG, et al. (2014) Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock? Appl Microbiol Biotechnol 98(17):7299-318 PMID:24970456
- Ring J, et al. (2012) The metabolism beyond programmed cell death in yeast. Exp Cell Res 318(11):1193-200 PMID:22480867
- Schmidtke LM, et al. (2012) Production technologies for reduced alcoholic wines. J Food Sci 77(1):R25-41 PMID:22260123
- Zhao XQ and Bai FW (2012) Zinc and yeast stress tolerance: micronutrient plays a big role. J Biotechnol 158(4):176-83 PMID:21763361
- Murray DB, et al. (2011) Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta 1810(10):945-58 PMID:21549177
- Ariño J (2010) Integrative responses to high pH stress in S. cerevisiae. OMICS 14(5):517-23 PMID:20726779
- Abbott DA, et al. (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123-36 PMID:19566685
- Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284(28):18565-9 PMID:19363031
- Hazelwood LA, et al. (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259-66 PMID:18281432
- Ito T, et al. (2008) Unexpected complexity of the budding yeast transcriptome. IUBMB Life 60(12):775-81 PMID:18649367
- de Smidt O, et al. (2008) The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 8(7):967-78 PMID:18479436
- Ishtar Snoek IS and Yde Steensma H (2007) Factors involved in anaerobic growth of Saccharomyces cerevisiae. Yeast 24(1):1-10 PMID:17192845
- Leskovac V, et al. (2002) The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae. FEMS Yeast Res 2(4):481-94 PMID:12702265
- Bakker BM, et al. (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):15-37 PMID:11152939
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Wang Y, et al. (2018) The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics 10(12):1755-1776 PMID:30358795
- Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50 PMID:24769239
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Dickinson JR, et al. (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278(10):8028-34 PMID:12499363
- Pilgrim D and Young ET (1987) Primary structure requirements for correct sorting of the yeast mitochondrial protein ADH III to the yeast mitochondrial matrix space. Mol Cell Biol 7(1):294-304 PMID:3550419
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Ohashi Y, et al. (2021) Biosyntheses of geranic acid and citronellic acid from monoterpene alcohols by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 85(6):1530-1535 PMID:33713103
- Wang YP, et al. (2021) Identification of Core Regulatory Genes and Metabolic Pathways for the n-Propanol Synthesis in Saccharomyces cerevisiae. J Agric Food Chem 69(5):1637-1646 PMID:33502852
- Iranmanesh E, et al. (2020) Improving l-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering. J Biotechnol 308:27-34 PMID:31733223
- Schleit J, et al. (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12(6):1050-61 PMID:23837470
- Young ET and Pilgrim D (1985) Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 5(11):3024-34 PMID:2943982
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Takeda E, et al. (2024) Receptor-mediated cargo hitchhiking on bulk autophagy. EMBO J 43(15):3116-3140 PMID:38755257
- Waltho A, et al. (2024) K48- and K63-linked ubiquitin chain interactome reveals branch- and length-specific ubiquitin interactors. Life Sci Alliance 7(8) PMID:38803224
- Ali A, et al. (2023) Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 25(11):1691-1703 PMID:37845327
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Choudhry SK, et al. (2023) Nuclear pore complexes mediate subtelomeric gene silencing by regulating PCNA levels on chromatin. J Cell Biol 222(9) PMID:37358474
- Courtin B, et al. (2023) Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MicroPubl Biol 2023 PMID:37746059
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Smurova K, et al. (2023) Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 14(1):3172 PMID:37263996
- Lehner MH, et al. (2022) Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 41(4):111536 PMID:36288698
- Yu H, et al. (2022) The peroxisomal exportomer directly inhibits phosphoactivation of the pexophagy receptor Atg36 to suppress pexophagy in yeast. Elife 11 PMID:35404228
- Perica T, et al. (2021) Systems-level effects of allosteric perturbations to a model molecular switch. Nature 599(7883):152-157 PMID:34646016
- Gotor NL, et al. (2020) RNA-binding and prion domains: the Yin and Yang of phase separation. Nucleic Acids Res 48(17):9491-9504 PMID:32857852
- Konduri PC, et al. (2020) Heme, A Metabolic Sensor, Directly Regulates the Activity of the KDM4 Histone Demethylase Family and Their Interactions with Partner Proteins. Cells 9(3) PMID:32235736
- Makepeace KAT, et al. (2020) Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker. Mol Cell Proteomics 19(4):624-639 PMID:32051233
- Bommi JR, et al. (2019) Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 24(1):94-106 PMID:30417519
- Girstmair H, et al. (2019) The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range. Nat Commun 10(1):3626 PMID:31399574
- Kolitsida P, et al. (2019) Phosphorylation of mitochondrial matrix proteins regulates their selective mitophagic degradation. Proc Natl Acad Sci U S A 116(41):20517-20527 PMID:31548421
- MacGilvray ME, et al. (2018) Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 13(5):e1006088 PMID:29738528
- Opaliński Ł, et al. (2018) Recruitment of Cytosolic J-Proteins by TOM Receptors Promotes Mitochondrial Protein Biogenesis. Cell Rep 25(8):2036-2043.e5 PMID:30463002
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Buser R, et al. (2016) The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress. PLoS Genet 12(2):e1005843 PMID:26849847
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Lorenzi I, et al. (2016) Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates. Mol Cell Biol 36(22):2782-2793 PMID:27550809
- Böttinger L, et al. (2015) Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 290(18):11611-22 PMID:25792736
- Lapointe CP, et al. (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163-70 PMID:26524240
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Truman AW, et al. (2015) Quantitative proteomics of the yeast Hsp70/Hsp90 interactomes during DNA damage reveal chaperone-dependent regulation of ribonucleotide reductase. J Proteomics 112:285-300 PMID:25452130
- Truman AW, et al. (2015) The quantitative changes in the yeast Hsp70 and Hsp90 interactomes upon DNA damage. Data Brief 2:12-5 PMID:26217697
- Mehnert CS, et al. (2014) The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 289(39):27352-27362 PMID:25124039
- Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Babu M, et al. (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585-9 PMID:22940862
- Ida Y, et al. (2012) Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 113(2):192-5 PMID:22033067
- Schenk L, et al. (2012) La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA 18(3):449-61 PMID:22271760
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Gao Q, et al. (2010) Coupling protein complex analysis to peptide based proteomics. J Chromatogr A 1217(49):7661-8 PMID:21036361
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Claypool SM, et al. (2008) Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 182(5):937-50 PMID:18779372
- Guerrero C, et al. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A 105(36):13333-8 PMID:18757749
- McClellan AJ, et al. (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121-35 PMID:17923092
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
- Bakker BM, et al. (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182(17):4730-7 PMID:10940011
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Bhagwat NR, et al. (2021) SUMO is a pervasive regulator of meiosis. Elife 10 PMID:33502312
- Frankovsky J, et al. (2021) The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. J Biol Chem 297(4):101155 PMID:34480900
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Weinert BT, et al. (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4(4):842-51 PMID:23954790
- Henriksen P, et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510-22 PMID:22865919
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Helsen J, et al. (2020) Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 37(10):2989-3002 PMID:32658971
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- García R, et al. (2015) Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 16(1):683 PMID:26341223
- Cuesta-Marbán Á, et al. (2013) Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J Biol Chem 288(12):8405-8418 PMID:23335509
- Marek A and Korona R (2013) Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 67(11):3077-86 PMID:24151994
- O'Connor ST, et al. (2012) Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front Genet 3:316 PMID:23403841
- Orij R, et al. (2012) Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae. Genome Biol 13(9):R80 PMID:23021432
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49 PMID:20963216
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Xie MW, et al. (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci U S A 102(20):7215-20 PMID:15883373
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549