Literature Help
YLR460C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Liu X, et al. (2022) Profiling Yeast Deletion Strains Using Sample Multiplexing and Network-Based Analyses. J Proteome Res 21(6):1525-1536 PMID:35544774
- Jacobus AP, et al. (2021) Comparative Genomics Supports That Brazilian Bioethanol Saccharomyces cerevisiae Comprise a Unified Group of Domesticated Strains Related to Cachaça Spirit Yeasts. Front Microbiol 12:644089 PMID:33936002
- Lin Z, et al. (2021) Multi-omics based strategy for toxicity analysis of acrylamide in Saccharomyces cerevisiae model. Chem Biol Interact 349:109682 PMID:34610338
- Santos PM, et al. (2009) Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics 9(3):657-70 PMID:19137554
- Kitagawa E, et al. (2005) Effects of iodine on global gene expression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69(12):2285-93 PMID:16377885
- Riveros-Rosas H, et al. (2003) Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. Eur J Biochem 270(16):3309-34 PMID:12899689
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Pagé B and Drouin G (2012) Stronger purifying selection against gene conversions in a pathogenic Saccharomyces cerevisiae strain. Genome 55(12):835-43 PMID:23231602
- Mak HC, et al. (2009) Dynamic reprogramming of transcription factors to and from the subtelomere. Genome Res 19(6):1014-25 PMID:19372386
- Iwahashi Y, et al. (2006) Mechanisms of patulin toxicity under conditions that inhibit yeast growth. J Agric Food Chem 54(5):1936-42 PMID:16506856
- Jörnvall H, et al. (2001) Variations and constant patterns in eukaryotic MDR enzymes. Conclusions from novel structures and characterized genomes. Chem Biol Interact 130-132(1-3):491-8 PMID:11306070
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Johansson MJ, et al. (2007) Association of yeast Upf1p with direct substrates of the NMD pathway. Proc Natl Acad Sci U S A 104(52):20872-7 PMID:18087042
- Hesselberth JR, et al. (2006) Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol 7(4):R30 PMID:16606443
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Ellahi A, et al. (2015) The Chromatin and Transcriptional Landscape of Native Saccharomyces cerevisiae Telomeres and Subtelomeric Domains. Genetics 200(2):505-21 PMID:25823445
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Jin R, et al. (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19(1):284-96 PMID:17989363
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549