Literature Help
MID2 / YLR332W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 255
- Aliases
-
KAI1
6
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Chadwick SR, et al. (2025) TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in Saccharomyces cerevisiae. Mol Biol Cell 36(2):ar13 PMID:39661468
- Watanabe D, et al. (2023) Rational design of alcoholic fermentation targeting extracellular carbon. NPJ Sci Food 7(1):37 PMID:37479699
- Bischof L, et al. (2022) The Intracellular Distribution of the Small GTPase Rho5 and Its Dimeric Guanidine Nucleotide Exchange Factor Dck1/Lmo1 Determine Their Function in Oxidative Stress Response. Int J Mol Sci 23(14) PMID:35887245
- Jiménez-Gutiérrez E, et al. (2022) Neomycin Interferes with Phosphatidylinositol-4,5-Bisphosphate at the Yeast Plasma Membrane and Activates the Cell Wall Integrity Pathway. Int J Mol Sci 23(19) PMID:36232332
- Rodriguez-Gallardo S, et al. (2022) Quality-controlled ceramide-based GPI-anchored protein sorting into selective ER exit sites. Cell Rep 39(5):110768 PMID:35508142
- Chen L, et al. (2021) Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 37(13):110120 PMID:34965437
- García R, et al. (2021) Poacic acid, a β-1,3-glucan-binding antifungal agent, inhibits cell-wall remodeling and activates transcriptional responses regulated by the cell-wall integrity and high-osmolarity glycerol pathways in yeast. FASEB J 35(9):e21778 PMID:34383971
- Hall AE, et al. (2021) Differential Requirement for the Cell Wall Integrity Sensor Wsc1p in Diploids Versus Haploids. J Fungi (Basel) 7(12) PMID:34947031
- Rodriguez-Gallardo S, et al. (2021) Assay for dual cargo sorting into endoplasmic reticulum exit sites imaged by 3D Super-resolution Confocal Live Imaging Microscopy (SCLIM). PLoS One 16(10):e0258111 PMID:34597321
- Zhao Y, et al. (2021) Roles of High Osmolarity Glycerol and Cell Wall Integrity Pathways in Cadmium Toxicity in Saccharomyces cerevisiae. Int J Mol Sci 22(12) PMID:34201004
- Zhao Y, et al. (2021) Mechanistic analysis of cadmium toxicity in Saccharomyces cerevisiae. FEMS Microbiol Lett 368(15) PMID:34370016
- Jiménez-Gutiérrez E, et al. (2020) Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. FEBS J 287(22):4881-4901 PMID:32150787
- Lee B, et al. (2020) Quantitative analysis of yeast MAPK signaling networks and crosstalk using a microfluidic device. Lab Chip 20(15):2646-2655 PMID:32597919
- Li X, et al. (2020) Transcriptomic analysis reveals MAPK signaling pathways affect the autolysis in baker's yeast. FEMS Yeast Res 20(5) PMID:32556321
- Techo T, et al. (2020) Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses. Appl Environ Microbiol 86(21) PMID:32859590
- Defenouillère Q, et al. (2019) The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose. Sci Signal 12(597) PMID:31481524
- García R, et al. (2019) Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Sci Rep 9(1):3186 PMID:30816278
- Hall AE and Rose MD (2019) Cell fusion in yeast is negatively regulated by components of the cell wall integrity pathway. Mol Biol Cell 30(4):441-452 PMID:30586320
- Kurokawa K, et al. (2019) Visualization of secretory cargo transport within the Golgi apparatus. J Cell Biol 218(5):1602-1618 PMID:30858192
- Santiago-Cartagena E, et al. (2019) Identification and Functional Testing of Novel Interacting Protein Partners for the Stress Sensors Wsc1p and Mid2p of Saccharomyces cerevisiae. G3 (Bethesda) 9(4):1085-1102 PMID:30733383
- Banavar SP, et al. (2018) Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis. PLoS Comput Biol 14(1):e1005940 PMID:29346368
- Syed MI, et al. (2018) Signal sequence-independent targeting of MID2 mRNA to the endoplasmic reticulum by the yeast RNA-binding protein Khd1p. FEBS Lett 592(11):1870-1881 PMID:29772604
- García R, et al. (2017) A novel connection between the Cell Wall Integrity and the PKA pathways regulates cell wall stress response in yeast. Sci Rep 7(1):5703 PMID:28720901
- Mishra R, et al. (2017) Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc Natl Acad Sci U S A 114(51):13471-13476 PMID:29196524
- Kock C, et al. (2016) Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling. Cell Microbiol 18(9):1251-67 PMID:27337501
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Prosser DC, et al. (2015) α-Arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis. J Cell Sci 128(22):4220-34 PMID:26459639
- Xiong B, et al. (2015) Cadmium induces the activation of cell wall integrity pathway in budding yeast. Chem Biol Interact 240:316-23 PMID:26362500
- Chapa-Y-Lazo B and Ayscough KR (2014) Apm4, the mu subunit of yeast AP-2 interacts with Pkc1, and mutation of the Pkc1 consensus phosphorylation site Thr176 inhibits AP-2 recruitment to endocytic sites. Commun Integr Biol 7:e28522 PMID:25346786
- Chapa-y-Lazo B, et al. (2014) Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses. Traffic 15(5):546-57 PMID:24460703
- Sarode N, et al. (2014) The Wsc1p cell wall signaling protein controls biofilm (Mat) formation independently of Flo11p in Saccharomyces cerevisiae. G3 (Bethesda) 4(2):199-207 PMID:24318926
- Jin C, et al. (2013) The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. Oxid Med Cell Longev 2013:320823 PMID:24260614
- Pacheco A, et al. (2013) C2-phytoceramide perturbs lipid rafts and cell integrity in Saccharomyces cerevisiae in a sterol-dependent manner. PLoS One 8(9):e74240 PMID:24040213
- Miyamoto M, et al. (2012) The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1. Yeast 29(11):475-85 PMID:23065846
- Spira F, et al. (2012) Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14(6):640-8 PMID:22544065
- Strickland D, et al. (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9(4):379-84 PMID:22388287
- Wang S, et al. (2012) α-Synuclein disrupts stress signaling by inhibiting polo-like kinase Cdc5/Plk2. Proc Natl Acad Sci U S A 109(40):16119-24 PMID:22988096
- de Lucena RM, et al. (2012) Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 113(3):629-40 PMID:22702539
- Prosser DC, et al. (2011) Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. J Cell Biol 195(4):657-71 PMID:22065638
- Gardarin A, et al. (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76(4):1034-48 PMID:20444096
- López-García B, et al. (2010) A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides. BMC Microbiol 10:289 PMID:21078184
- Manjithaya R, et al. (2010) A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 189(2):303-10 PMID:20385774
- Birkaya B, et al. (2009) Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth. Eukaryot Cell 8(8):1118-33 PMID:19502582
- Castillon GA, et al. (2009) Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic 10(2):186-200 PMID:19054390
- Klemm RW, et al. (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185(4):601-12 PMID:19433450
- Scrimale T, et al. (2009) The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae. Mol Biol Cell 20(1):164-75 PMID:18971375
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Hutzler F, et al. (2008) Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol Microbiol 68(6):1438-49 PMID:18410496
- Rodicio R, et al. (2008) Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis. Fungal Genet Biol 45(4):422-35 PMID:17827039
- Straede A and Heinisch JJ (2007) Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett 581(23):4495-500 PMID:17761172
- Straede A, et al. (2007) The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling. Yeast 24(4):321-34 PMID:17397109
- Lottersberger F, et al. (2006) The Saccharomyces cerevisiae 14-3-3 proteins are required for the G1/S transition, actin cytoskeleton organization and cell wall integrity. Genetics 173(2):661-75 PMID:16648583
- Chen Y, et al. (2005) Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res 3(12):669-77 PMID:16380504
- Claret S, et al. (2005) The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae. Eukaryot Cell 4(8):1375-86 PMID:16087742
- Vilella F, et al. (2005) Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J Biol Chem 280(10):9149-59 PMID:15637049
- Gualtieri T, et al. (2004) The cell wall sensor Wsc1p is involved in reorganization of actin cytoskeleton in response to hypo-osmotic shock in Saccharomyces cerevisiae. Yeast 21(13):1107-20 PMID:15484288
- Lommel M, et al. (2004) Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 24(1):46-57 PMID:14673142
- Merchan S, et al. (2004) Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot Cell 3(1):100-7 PMID:14871941
- Green R, et al. (2003) A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology (Reading) 149(Pt 9):2487-2499 PMID:12949174
- Torres J, et al. (2002) Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem 277(45):43495-504 PMID:12171921
- Philip B and Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21(1):271-80 PMID:11113201
- de Bettignies G, et al. (2001) Overactivation of the protein kinase C-signaling pathway suppresses the defects of cells lacking the Rho3/Rho4-GAP Rgd1p in Saccharomyces cerevisiae. Genetics 159(4):1435-48 PMID:11779787
- Andrews PD and Stark MJ (2000) Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J Cell Sci 113 ( Pt 3):507-20 PMID:10639337
- Marcoux N, et al. (2000) Suppression of the profilin-deficient phenotype by the RHO2 signaling pathway in Saccharomyces cerevisiae. Genetics 156(2):579-92 PMID:11014808
- Martín H, et al. (2000) Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275(2):1511-9 PMID:10625705
- Ketela T, et al. (1999) Saccharomyces cerevisiae mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 181(11):3330-40 PMID:10348843
- Rajavel M, et al. (1999) Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19(6):3969-76 PMID:10330137
- de Bettignies G, et al. (1999) RGD1 genetically interacts with MID2 and SLG1, encoding two putative sensors for cell integrity signalling in Saccharomyces cerevisiae. Yeast 15(16):1719-31 PMID:10590461
- Marcoux N, et al. (1998) Overexpression of MID2 suppresses the profilin-deficient phenotype of yeast cells. Mol Microbiol 29(2):515-26 PMID:9720869
- Takeuchi J, et al. (1995) The SMS1 gene encoding a serine-rich transmembrane protein suppresses the temperature sensitivity of the htr1 disruptant in Saccharomyces cerevisiae. Biochim Biophys Acta 1260(1):94-6 PMID:7999801
- Ono T, et al. (1994) The MID2 gene encodes a putative integral membrane protein with a Ca(2+)-binding domain and shows mating pheromone-stimulated expression in Saccharomyces cerevisiae. Gene 151(1-2):203-8 PMID:7828875
- Daniel J (1993) Potentially rapid walking in cellular regulatory networks using the gene-gene interference method in yeast. Mol Gen Genet 240(2):245-57 PMID:8355657
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Lemieux P, et al. (2024) Dissection of the role of a Src homology 3 domain in the evolution of binding preference of paralogous proteins. Genetics 226(1) PMID:37793087
- Razdaibiedina A, et al. (2024) PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data. Mol Syst Biol 20(5):521-548 PMID:38472305
- Williams TD, et al. (2024) Distinct TORC1 signalling branches regulate Adc17 proteasome assembly chaperone expression. J Cell Sci 137(14) PMID:38949052
- Xue S, et al. (2023) Comprehensive Analysis of Signal Peptides in Saccharomyces cerevisiae Reveals Features for Efficient Secretion. Adv Sci (Weinh) 10(2):e2203433 PMID:36478443
- Grosjean N, et al. (2022) Combined omics approaches reveal distinct responses between light and heavy rare earth elements in Saccharomyces cerevisiae. J Hazard Mater 425:127830 PMID:34896703
- Nomura W, et al. (2022) Roles of phosphatidylserine and phospholipase C in the activation of TOR complex 2 signaling in Saccharomyces cerevisiae. J Cell Sci 135(17) PMID:35912799
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Fu Y, et al. (2020) Jawsamycin exhibits in vivo antifungal properties by inhibiting Spt14/Gpi3-mediated biosynthesis of glycosylphosphatidylinositol. Nat Commun 11(1):3387 PMID:32636417
- Pandey P, et al. (2020) Comparative Proteomics Analysis Reveals Unique Early Signaling Response of Saccharomyces cerevisiae to Oxidants with Different Mechanism of Action. Int J Mol Sci 22(1) PMID:33375274
- Vélez-Segarra V, et al. (2020) Protein Interactions of the Mechanosensory Proteins Wsc2 and Wsc3 for Stress Resistance in Saccharomyces cerevisiae. G3 (Bethesda) 10(9):3121-3135 PMID:32641451
- Wei S, et al. (2019) A Thi2p Regulatory Network Controls the Post-glucose Effect of Xylose Utilization in Saccharomyces cerevisiae. Front Microbiol 10:1649 PMID:31379793
- Riggi M, et al. (2018) Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat Cell Biol 20(9):1043-1051 PMID:30154550
- Apel AR, et al. (2017) Syp1 regulates the clathrin-mediated and clathrin-independent endocytosis of multiple cargo proteins through a novel sorting motif. Mol Biol Cell 28(18):2434-2448 PMID:28701344
- Pagant S, et al. (2015) Sec24 is a coincidence detector that simultaneously binds two signals to drive ER export. Curr Biol 25(4):403-12 PMID:25619760
- Nishida N, et al. (2014) Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae. Curr Genet 60(3):149-62 PMID:24378717
- Curwin AJ, et al. (2013) Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14. PLoS One 8(1):e55388 PMID:23383173
- Rodríguez-Peña JM, et al. (2013) Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucin-like protein Hkr1 but not Msb2. FEBS Lett 587(22):3675-80 PMID:24100139
- Bastos de Oliveira FM, et al. (2012) Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 31(7):1798-810 PMID:22333912
- Córcoles-Sáez I, et al. (2012) Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae. Biochem J 446(3):477-88 PMID:22747505
- Herzig Y, et al. (2012) A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol 10(5):e1001329 PMID:22629230
- Krause SA, et al. (2012) Functional specialisation of yeast Rho1 GTP exchange factors. J Cell Sci 125(Pt 11):2721-31 PMID:22344253
- Liu M, et al. (2012) Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast. J Cell Sci 125(Pt 10):2428-35 PMID:22328531
- North M, et al. (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8(6):e1002699 PMID:22685415
- Pagán-Mercado G, et al. (2012) Functional and genetic interactions of TOR in the budding yeast Saccharomyces cerevisiae with myosin type II-deficiency (myo1Δ). BMC Cell Biol 13:13 PMID:22646158
- Pasikowska M, et al. (2012) The essential endoplasmic reticulum chaperone Rot1 is required for protein N- and O-glycosylation in yeast. Glycobiology 22(7):939-47 PMID:22492205
- Yan G, et al. (2012) The TOR complex 1 is a direct target of Rho1 GTPase. Mol Cell 45(6):743-53 PMID:22445487
- Jayakody LN, et al. (2011) Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol Lett 33(2):285-92 PMID:20960220
- Mao K, et al. (2011) Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 193(4):755-67 PMID:21576396
- Ragni E, et al. (2011) The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections. BMC Genomics 12:107 PMID:21320323
- Surma MA, et al. (2011) Generic sorting of raft lipids into secretory vesicles in yeast. Traffic 12(9):1139-47 PMID:21575114
- Villa-García MJ, et al. (2011) Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 285(2):125-49 PMID:21136082
- Bermejo C, et al. (2010) Characterization of sensor-specific stress response by transcriptional profiling of wsc1 and mid2 deletion strains and chimeric sensors in Saccharomyces cerevisiae. OMICS 14(6):679-88 PMID:20958245
- Heinisch JJ, et al. (2010) Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy. Nat Protoc 5(4):670-7 PMID:20360762
- Li X, et al. (2010) Activation of the mitogen-activated protein kinase, Slt2p, at bud tips blocks a late stage of endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol Biol Cell 21(10):1772-82 PMID:20357006
- Wilk S, et al. (2010) A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo. Mol Genet Genomics 284(3):217-29 PMID:20652590
- Dupres V, et al. (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5(11):857-62 PMID:19767735
- Gunde-Cimerman N, et al. (2009) Halotolerant and halophilic fungi. Mycol Res 113(Pt 11):1231-41 PMID:19747974
- Mollapour M, et al. (2009) Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology (Reading) 155(Pt 10):3304-3311 PMID:19608606
- Narayanaswamy R, et al. (2009) Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast. J Proteome Res 8(1):6-19 PMID:19053807
- Reider A, et al. (2009) Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J 28(20):3103-16 PMID:19713939
- Rolli E, et al. (2009) Immobilization of the glycosylphosphatidylinositol-anchored Gas1 protein into the chitin ring and septum is required for proper morphogenesis in yeast. Mol Biol Cell 20(22):4856-70 PMID:19793924
- Bermejo C, et al. (2008) The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell 19(3):1113-24 PMID:18184748
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Wright DJ, et al. (2008) The Saccharomyces cerevisiae actin cytoskeletal component Bsp1p has an auxiliary role in actomyosin ring function and in the maintenance of bud-neck structure. Genetics 178(4):1903-14 PMID:18430924
- Zhao XM, et al. (2008) Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res 36(9):e48 PMID:18411207
- Coronado JE, et al. (2007) Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6(12):2269-77 PMID:17951517
- Oeffinger M, et al. (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4(11):951-6 PMID:17922018
- Quan X, et al. (2007) The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress. Biochim Biophys Acta 1773(7):1052-61 PMID:17544521
- Wright CM, et al. (2007) The Hsp40 molecular chaperone Ydj1p, along with the protein kinase C pathway, affects cell-wall integrity in the yeast Saccharomyces cerevisiae. Genetics 175(4):1649-64 PMID:17237519
- Fernandes H, et al. (2006) The Rho3 and Rho4 small GTPases interact functionally with Wsc1p, a cell surface sensor of the protein kinase C cell-integrity pathway in Saccharomyces cerevisiae. Microbiology (Reading) 152(Pt 3):695-708 PMID:16514150
- Kuranda K, et al. (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61(5):1147-66 PMID:16925551
- Proszynski TJ, et al. (2006) Plasma membrane polarization during mating in yeast cells. J Cell Biol 173(6):861-6 PMID:16769822
- García-Rodríguez LJ, et al. (2005) Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 579(27):6186-90 PMID:16243316
- Imazu H and Sakurai H (2005) Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell 4(6):1050-6 PMID:15947197
- Wong SL and Roth FP (2005) Transcriptional compensation for gene loss plays a minor role in maintaining genetic robustness in Saccharomyces cerevisiae. Genetics 171(2):829-33 PMID:15998714
- Zanelli CF and Valentini SR (2005) Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant. Genetics 171(4):1571-81 PMID:16157662
- Banerjee D, et al. (2004) Genome-wide expression profile of steroid response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 317(2):406-13 PMID:15063773
- Markovich S, et al. (2004) Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob Agents Chemother 48(10):3871-6 PMID:15388447
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Vay HA, et al. (2004) Mutational analysis of the cytoplasmic domain of the Wsc1 cell wall stress sensor. Microbiology (Reading) 150(Pt 10):3281-8 PMID:15470108
- Bonilla M and Cunningham KW (2003) Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast. Mol Biol Cell 14(10):4296-305 PMID:14517337
- Reinoso-Martín C, et al. (2003) The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2(6):1200-10 PMID:14665455
- Shepard KA, et al. (2003) Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci U S A 100(20):11429-34 PMID:13679573
- Zeitlinger J, et al. (2003) Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113(3):395-404 PMID:12732146
- Angeles de la Torre-Ruiz M, et al. (2002) Sit4 is required for proper modulation of the biological functions mediated by Pkc1 and the cell integrity pathway in Saccharomyces cerevisiae. J Biol Chem 277(36):33468-76 PMID:12080055
- Chai B, et al. (2002) Yeast RSC function is required for organization of the cellular cytoskeleton via an alternative PKC1 pathway. Genetics 161(2):575-84 PMID:12072455
- He X and Zhang B (2002) [Studies on cell integrity pathway and its upstream regulation factors in yeast]. Wei Sheng Wu Xue Bao 42(3):384-7 PMID:12557385
- Sekiya-Kawasaki M, et al. (2002) Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics 162(2):663-76 PMID:12399379
- Kosodo Y, et al. (2001) Multicopy suppressors of the sly1 temperature-sensitive mutation in the ER-Golgi vesicular transport in Saccharomyces cerevisiae. Yeast 18(11):1003-14 PMID:11481671
- Stirling DA and Stark MJ (2000) Mutations in SPC110, encoding the yeast spindle pole body calmodulin-binding protein, cause defects in cell integrity as well as spindle formation. Biochim Biophys Acta 1499(1-2):85-100 PMID:11118641
- de Nobel H, et al. (2000) Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology (Reading) 146 ( Pt 9):2121-2132 PMID:10974100
Reviews
No reviews curated.
Download References (.nbib)
- Soni N and Bacete L (2023) The interplay between cell wall integrity and cell cycle progression in plants. Plant Mol Biol 113(6):367-382 PMID:38091166
- González-Rubio G, et al. (2022) Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. J Fungi (Basel) 8(4) PMID:35448599
- Li B, et al. (2022) Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnol Biofuels Bioprod 15(1):28 PMID:35292082
- Mishra R, et al. (2022) Cells under pressure: how yeast cells respond to mechanical forces. Trends Microbiol 30(5):495-510 PMID:35000797
- Ribeiro RA, et al. (2022) The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 13:953479 PMID:35966694
- Ugbogu EA, et al. (2022) Contribution of Model Organisms to Investigating the Far-Reaching Consequences of PRPP Metabolism on Human Health and Well-Being. Cells 11(12) PMID:35741038
- Friedson B and Cooper KF (2021) Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 9(10) PMID:34683473
- Innokentev A and Kanki T (2021) Mitophagy in Yeast: Molecular Mechanism and Regulation. Cells 10(12) PMID:34944077
- de Oliveira HC, et al. (2021) Cell Wall Integrity Pathway Involved in Morphogenesis, Virulence and Antifungal Susceptibility in Cryptococcus neoformans. J Fungi (Basel) 7(10) PMID:34682253
- Bassilana M, et al. (2020) External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 62:150-158 PMID:31875532
- Van Drogen F, et al. (2020) Crosstalk and spatiotemporal regulation between stress-induced MAP kinase pathways and pheromone signaling in budding yeast. Cell Cycle 19(14):1707-1715 PMID:32552303
- Elhasi T and Blomberg A (2019) Integrins in disguise - mechanosensors in Saccharomyces cerevisiae as functional integrin analogues. Microb Cell 6(8):335-355 PMID:31404395
- Lee J, et al. (2019) Stressing out or stressing in: intracellular pathways for SAPK activation. Curr Genet 65(2):417-421 PMID:30377756
- Mamaev DV and Zvyagilskaya RA (2019) Mitophagy in Yeast. Biochemistry (Mosc) 84(Suppl 1):S225-S232 PMID:31213204
- Cohen BE (2018) Membrane Thickness as a Key Factor Contributing to the Activation of Osmosensors and Essential Ras Signaling Pathways. Front Cell Dev Biol 6:76 PMID:30087894
- de Almeida RFM (2018) A route to understanding yeast cellular envelope - plasma membrane lipids interplaying in cell wall integrity. FEBS J 285(13):2402-2404 PMID:29949239
- Sanz AB, et al. (2017) The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J Fungi (Basel) 4(1) PMID:29371494
- Caspeta L, et al. (2015) Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 3:184 PMID:26618154
- Hamann T (2015) The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network. Phytochemistry 112:100-9 PMID:25446233
- Hamann T (2015) The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action. Plant Cell Physiol 56(2):215-23 PMID:25416836
- Kock C, et al. (2015) Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl Environ Microbiol 81(3):806-11 PMID:25398859
- Engelberg D, et al. (2014) Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 26(12):2865-78 PMID:25218923
- Smethurst DG, et al. (2014) Actin - a biosensor that determines cell fate in yeasts. FEMS Yeast Res 14(1):89-95 PMID:24151902
- Francois JM, et al. (2013) Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae. Curr Genet 59(4):187-96 PMID:24071902
- Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33-82 PMID:23419716
- Merzendorfer H and Heinisch JJ (2013) Microcompartments within the yeast plasma membrane. Biol Chem 394(2):189-202 PMID:23096568
- Cullen PJ and Sprague GF (2012) The regulation of filamentous growth in yeast. Genetics 190(1):23-49 PMID:22219507
- Prosser DC and Wendland B (2012) Conserved roles for yeast Rho1 and mammalian RhoA GTPases in clathrin-independent endocytosis. Small GTPases 3(4):229-35 PMID:23238351
- Smolka MB, et al. (2012) The checkpoint transcriptional response: make sure to turn it off once you are satisfied. Cell Cycle 11(17):3166-74 PMID:22895177
- Verghese J, et al. (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76(2):115-58 PMID:22688810
- Backhaus K, et al. (2011) Milk and sugar: regulation of cell wall synthesis in the milk yeast Kluyveromyces lactis. Eur J Cell Biol 90(9):745-50 PMID:21628080
- Jendretzki A, et al. (2011) How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. Eur J Cell Biol 90(9):740-4 PMID:21640429
- Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189(4):1145-75 PMID:22174182
- Ariño J (2010) Integrative responses to high pH stress in S. cerevisiae. OMICS 14(5):517-23 PMID:20726779
- Conibear E (2010) Converging views of endocytosis in yeast and mammals. Curr Opin Cell Biol 22(4):513-8 PMID:20538447
- Heinisch JJ and Dufrêne YF (2010) Is there anyone out there?--Single-molecule atomic force microscopy meets yeast genetics to study sensor functions. Integr Biol (Camb) 2(9):408-15 PMID:20648385
- Molina M, et al. (2010) Fine regulation of Saccharomyces cerevisiae MAPK pathways by post-translational modifications. Yeast 27(8):503-11 PMID:20641029
- Rodicio R and Heinisch JJ (2010) Together we are strong--cell wall integrity sensors in yeasts. Yeast 27(8):531-40 PMID:20641024
- Rodríguez-Peña JM, et al. (2010) The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27(8):495-502 PMID:20641030
- Fuchs BB and Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8(11):1616-25 PMID:19717745
- Lengeler KB, et al. (2008) Protein-O-mannosyltransferases in virulence and development. Cell Mol Life Sci 65(4):528-44 PMID:17975704
- Chen RE and Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773(8):1311-40 PMID:17604854
- Lesage G and Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70(2):317-43 PMID:16760306
- Heinisch JJ (2005) Baker's yeast as a tool for the development of antifungal kinase inhibitors--targeting protein kinase C and the cell integrity pathway. Biochim Biophys Acta 1754(1-2):171-82 PMID:16216564
- Mager WH and Siderius M (2002) Novel insights into the osmotic stress response of yeast. FEMS Yeast Res 2(3):251-7 PMID:12702273
- Cabib E, et al. (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276(23):19679-82 PMID:11309404
- Smits GJ, et al. (2001) Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology (Reading) 147(Pt 4):781-794 PMID:11283274
- Zanders ED (2000) Gene expression analysis as an aid to the identification of drug targets. Pharmacogenomics 1(4):375-84 PMID:11257923
- Heinisch JJ, et al. (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32(4):671-80 PMID:10361272
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Chapa-y-Lazo B, et al. (2014) Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses. Traffic 15(5):546-57 PMID:24460703
- Manjithaya R, et al. (2010) A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 189(2):303-10 PMID:20385774
- Narayanaswamy R, et al. (2009) Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast. J Proteome Res 8(1):6-19 PMID:19053807
- Scrimale T, et al. (2009) The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae. Mol Biol Cell 20(1):164-75 PMID:18971375
- Claret S, et al. (2005) The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae. Eukaryot Cell 4(8):1375-86 PMID:16087742
- Merchan S, et al. (2004) Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot Cell 3(1):100-7 PMID:14871941
- Green R, et al. (2003) A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology (Reading) 149(Pt 9):2487-2499 PMID:12949174
- Marcoux N, et al. (2000) Suppression of the profilin-deficient phenotype by the RHO2 signaling pathway in Saccharomyces cerevisiae. Genetics 156(2):579-92 PMID:11014808
- Ketela T, et al. (1999) Saccharomyces cerevisiae mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 181(11):3330-40 PMID:10348843
- Rajavel M, et al. (1999) Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19(6):3969-76 PMID:10330137
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Fu Y, et al. (2020) Jawsamycin exhibits in vivo antifungal properties by inhibiting Spt14/Gpi3-mediated biosynthesis of glycosylphosphatidylinositol. Nat Commun 11(1):3387 PMID:32636417
- Techo T, et al. (2020) Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses. Appl Environ Microbiol 86(21) PMID:32859590
- Defenouillère Q, et al. (2019) The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose. Sci Signal 12(597) PMID:31481524
- Hall AE and Rose MD (2019) Cell fusion in yeast is negatively regulated by components of the cell wall integrity pathway. Mol Biol Cell 30(4):441-452 PMID:30586320
- Miyamoto M, et al. (2012) The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1. Yeast 29(11):475-85 PMID:23065846
- Gardarin A, et al. (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76(4):1034-48 PMID:20444096
- López-García B, et al. (2010) A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides. BMC Microbiol 10:289 PMID:21078184
- Manjithaya R, et al. (2010) A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 189(2):303-10 PMID:20385774
- Straede A, et al. (2007) The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling. Yeast 24(4):321-34 PMID:17397109
- Chen Y, et al. (2005) Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res 3(12):669-77 PMID:16380504
- Staleva L, et al. (2004) Oxidative stress activates FUS1 and RLM1 transcription in the yeast Saccharomyces cerevisiae in an oxidant-dependent Manner. Mol Biol Cell 15(12):5574-82 PMID:15385622
- Marcoux N, et al. (2000) Suppression of the profilin-deficient phenotype by the RHO2 signaling pathway in Saccharomyces cerevisiae. Genetics 156(2):579-92 PMID:11014808
- Martín H, et al. (2000) Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275(2):1511-9 PMID:10625705
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Chelius X, et al. (2025) A protein interaction map of the myosin Myo2 reveals a role for Alo1 in mitochondrial inheritance in yeast. J Cell Sci 138(3) PMID:39775849
- Nomura W and Inoue Y (2024) Activation of the cell wall integrity pathway negatively regulates TORC2-Ypk1/2 signaling through blocking eisosome disassembly in Saccharomyces cerevisiae. Commun Biol 7(1):722 PMID:38862688
- Caydasi AK, et al. (2023) SWR1 chromatin remodeling complex prevents mitotic slippage during spindle position checkpoint arrest. Mol Biol Cell 34(2):ar11 PMID:36542480
- Meyer L, et al. (2023) eIF2A represses cell wall biogenesis gene expression in Saccharomyces cerevisiae. PLoS One 18(11):e0293228 PMID:38011112
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Mishra PK, et al. (2023) Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 34(10):ar99 PMID:37436802
- Shortill SP, et al. (2022) The VINE complex is an endosomal VPS9-domain GEF and SNX-BAR coat. Elife 11 PMID:35938928
- Chen L, et al. (2021) Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 37(13):110120 PMID:34965437
- Hall AE, et al. (2021) Differential Requirement for the Cell Wall Integrity Sensor Wsc1p in Diploids Versus Haploids. J Fungi (Basel) 7(12) PMID:34947031
- Chao JT, et al. (2019) Transfer of the Septin Ring to Cytokinetic Remnants in ER Stress Directs Age-Sensitive Cell-Cycle Re-entry. Dev Cell 51(2):173-191.e5 PMID:31564614
- Hall AE and Rose MD (2019) Cell fusion in yeast is negatively regulated by components of the cell wall integrity pathway. Mol Biol Cell 30(4):441-452 PMID:30586320
- Santiago-Cartagena E, et al. (2019) Identification and Functional Testing of Novel Interacting Protein Partners for the Stress Sensors Wsc1p and Mid2p of Saccharomyces cerevisiae. G3 (Bethesda) 9(4):1085-1102 PMID:30733383
- Singh K, et al. (2019) Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast. G3 (Bethesda) 9(3):921-931 PMID:30670610
- Xu F, et al. (2019) SSD1 suppresses phenotypes induced by the lack of Elongator-dependent tRNA modifications. PLoS Genet 15(8):e1008117 PMID:31465447
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Syed MI, et al. (2018) Signal sequence-independent targeting of MID2 mRNA to the endoplasmic reticulum by the yeast RNA-binding protein Khd1p. FEBS Lett 592(11):1870-1881 PMID:29772604
- Apel AR, et al. (2017) Syp1 regulates the clathrin-mediated and clathrin-independent endocytosis of multiple cargo proteins through a novel sorting motif. Mol Biol Cell 28(18):2434-2448 PMID:28701344
- Mishra R, et al. (2017) Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc Natl Acad Sci U S A 114(51):13471-13476 PMID:29196524
- Zimmermann C, et al. (2017) Mapping the Synthetic Dosage Lethality Network of CDK1/CDC28. G3 (Bethesda) 7(6):1753-1766 PMID:28428242
- Ahmadpour D, et al. (2016) The mitogen-activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Lett 590(20):3649-3659 PMID:27607883
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Hanzén S, et al. (2016) Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins. Cell 166(1):140-51 PMID:27264606
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Chapa-y-Lazo B, et al. (2014) Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses. Traffic 15(5):546-57 PMID:24460703
- Jin C, et al. (2013) The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. Oxid Med Cell Longev 2013:320823 PMID:24260614
- Nguyen HD, et al. (2013) Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS One 8(6):e66379 PMID:23824283
- Surma MA, et al. (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519-30 PMID:23891562
- Krause SA, et al. (2012) Functional specialisation of yeast Rho1 GTP exchange factors. J Cell Sci 125(Pt 11):2721-31 PMID:22344253
- Liu M, et al. (2012) Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast. J Cell Sci 125(Pt 10):2428-35 PMID:22328531
- Schlecht U, et al. (2012) Multiplex assay for condition-dependent changes in protein-protein interactions. Proc Natl Acad Sci U S A 109(23):9213-8 PMID:22615397
- Ragni E, et al. (2011) The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections. BMC Genomics 12:107 PMID:21320323
- Surma MA, et al. (2011) Generic sorting of raft lipids into secretory vesicles in yeast. Traffic 12(9):1139-47 PMID:21575114
- Aguilar PS, et al. (2010) A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct Mol Biol 17(7):901-8 PMID:20526336
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Birkaya B, et al. (2009) Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth. Eukaryot Cell 8(8):1118-33 PMID:19502582
- Reider A, et al. (2009) Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J 28(20):3103-16 PMID:19713939
- Colomina N, et al. (2008) Whi3, a developmental regulator of budding yeast, binds a large set of mRNAs functionally related to the endoplasmic reticulum. J Biol Chem 283(42):28670-9 PMID:18667435
- Durand F, et al. (2008) Structure-function analysis of Knr4/Smi1, a newly member of intrinsically disordered proteins family, indispensable in the absence of a functional PKC1-SLT2 pathway in Saccharomyces cerevisiae. Yeast 25(8):563-76 PMID:18668512
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Rodicio R, et al. (2008) Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis. Fungal Genet Biol 45(4):422-35 PMID:17827039
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Oeffinger M, et al. (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4(11):951-6 PMID:17922018
- Straede A and Heinisch JJ (2007) Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett 581(23):4495-500 PMID:17761172
- Wright CM, et al. (2007) The Hsp40 molecular chaperone Ydj1p, along with the protein kinase C pathway, affects cell-wall integrity in the yeast Saccharomyces cerevisiae. Genetics 175(4):1649-64 PMID:17237519
- Lottersberger F, et al. (2006) The Saccharomyces cerevisiae 14-3-3 proteins are required for the G1/S transition, actin cytoskeleton organization and cell wall integrity. Genetics 173(2):661-75 PMID:16648583
- Claret S, et al. (2005) The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae. Eukaryot Cell 4(8):1375-86 PMID:16087742
- Imazu H and Sakurai H (2005) Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell 4(6):1050-6 PMID:15947197
- Zanelli CF and Valentini SR (2005) Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant. Genetics 171(4):1571-81 PMID:16157662
- Gualtieri T, et al. (2004) The cell wall sensor Wsc1p is involved in reorganization of actin cytoskeleton in response to hypo-osmotic shock in Saccharomyces cerevisiae. Yeast 21(13):1107-20 PMID:15484288
- Lesage G, et al. (2004) Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167(1):35-49 PMID:15166135
- Lommel M, et al. (2004) Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 24(1):46-57 PMID:14673142
- Merchan S, et al. (2004) Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot Cell 3(1):100-7 PMID:14871941
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Vay HA, et al. (2004) Mutational analysis of the cytoplasmic domain of the Wsc1 cell wall stress sensor. Microbiology (Reading) 150(Pt 10):3281-8 PMID:15470108
- Green R, et al. (2003) A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology (Reading) 149(Pt 9):2487-2499 PMID:12949174
- Audhya A and Emr SD (2002) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2(5):593-605 PMID:12015967
- Chai B, et al. (2002) Yeast RSC function is required for organization of the cellular cytoskeleton via an alternative PKC1 pathway. Genetics 161(2):575-84 PMID:12072455
- Sekiya-Kawasaki M, et al. (2002) Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics 162(2):663-76 PMID:12399379
- de Bettignies G, et al. (2001) Overactivation of the protein kinase C-signaling pathway suppresses the defects of cells lacking the Rho3/Rho4-GAP Rgd1p in Saccharomyces cerevisiae. Genetics 159(4):1435-48 PMID:11779787
- Kosodo Y, et al. (2001) Multicopy suppressors of the sly1 temperature-sensitive mutation in the ER-Golgi vesicular transport in Saccharomyces cerevisiae. Yeast 18(11):1003-14 PMID:11481671
- Philip B and Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21(1):271-80 PMID:11113201
- Andrews PD and Stark MJ (2000) Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J Cell Sci 113 ( Pt 3):507-20 PMID:10639337
- Marcoux N, et al. (2000) Suppression of the profilin-deficient phenotype by the RHO2 signaling pathway in Saccharomyces cerevisiae. Genetics 156(2):579-92 PMID:11014808
- Stirling DA and Stark MJ (2000) Mutations in SPC110, encoding the yeast spindle pole body calmodulin-binding protein, cause defects in cell integrity as well as spindle formation. Biochim Biophys Acta 1499(1-2):85-100 PMID:11118641
- de Bettignies G, et al. (1999) RGD1 genetically interacts with MID2 and SLG1, encoding two putative sensors for cell integrity signalling in Saccharomyces cerevisiae. Yeast 15(16):1719-31 PMID:10590461
- Ketela T, et al. (1999) Saccharomyces cerevisiae mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 181(11):3330-40 PMID:10348843
- Rajavel M, et al. (1999) Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19(6):3969-76 PMID:10330137
- Marcoux N, et al. (1998) Overexpression of MID2 suppresses the profilin-deficient phenotype of yeast cells. Mol Microbiol 29(2):515-26 PMID:9720869
- Manning BD, et al. (1997) The Rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cytoskeletal functions in Saccharomyces cerevisiae. Mol Biol Cell 8(10):1829-44 PMID:9348527
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Hutzler F, et al. (2008) Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol Microbiol 68(6):1438-49 PMID:18410496
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Grosjean N, et al. (2023) Yeast Deletomics to Uncover Gadolinium Toxicity Targets and Resistance Mechanisms. Microorganisms 11(8) PMID:37630673
- Li Q, et al. (2023) Genome-wide identification of resistance genes and cellular analysis of key gene knockout strain under 5-hydroxymethylfurfural stress in Saccharomyces cerevisiae. BMC Microbiol 23(1):382 PMID:38049732
- Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
- Fu Y, et al. (2020) Jawsamycin exhibits in vivo antifungal properties by inhibiting Spt14/Gpi3-mediated biosynthesis of glycosylphosphatidylinositol. Nat Commun 11(1):3387 PMID:32636417
- Novarina D, et al. (2020) A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae. G3 (Bethesda) 10(6):1853-1867 PMID:32265288
- Rawal Y, et al. (2018) Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Mol Cell 70(2):297-311.e4 PMID:29628310
- Zatorska E, et al. (2017) Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 18(6) PMID:28598353
- García R, et al. (2015) Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 16(1):683 PMID:26341223
- Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528 PMID:24968945
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Jiang L, et al. (2014) Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast. FEMS Yeast Res 14(8):1263-72 PMID:25331360
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Douglas AC, et al. (2012) Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2(10):1279-89 PMID:23050238
- Kim H, et al. (2012) Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem 287(23):19029-39 PMID:22511765
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- de Castro PA, et al. (2011) Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot Cell 10(3):398-411 PMID:21193549
- Jayakody LN, et al. (2011) Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol Lett 33(2):285-92 PMID:20960220
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Villa-García MJ, et al. (2011) Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 285(2):125-49 PMID:21136082
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Alamgir M, et al. (2010) Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol 10:6 PMID:20691087
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Fujita K, et al. (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6(5):744-50 PMID:16879425
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Markovich S, et al. (2004) Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob Agents Chemother 48(10):3871-6 PMID:15388447
- Parsons AB, et al. (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22(1):62-9 PMID:14661025
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Madhani HD, et al. (1999) Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci U S A 96(22):12530-5 PMID:10535956