Literature Help
SKG3 / YLR187W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Zhu J, et al. (2015) Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity. G3 (Bethesda) 5(6):1043-56 PMID:25823586
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Tomishige N, et al. (2005) SKG1, a suppressor gene of synthetic lethality of kex2Deltagas1Delta mutations, encodes a novel membrane protein that affects cell wall composition. Yeast 22(2):141-55 PMID:15645486
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Goldman A, et al. (2014) The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Mol Cell 55(3):422-435 PMID:24930733
- Kayatekin C, et al. (2014) Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1. Proc Natl Acad Sci U S A 111(33):12085-90 PMID:25092318
- Alabrudzinska M, et al. (2011) Diploid-specific [corrected] genome stability genes of S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. PLoS One 6(6):e21124 PMID:21695049
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- Martorell P, et al. (2011) Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. J Agric Food Chem 59(5):2077-85 PMID:21288028
- Gallego O, et al. (2010) A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6:430 PMID:21119626
- Alberti S, et al. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137(1):146-58 PMID:19345193
- Zou J, et al. (2009) Regulation of cell polarity through phosphorylation of Bni4 by Pho85 G1 cyclin-dependent kinases in Saccharomyces cerevisiae. Mol Biol Cell 20(14):3239-50 PMID:19458192
- Daran-Lapujade P, et al. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125-38 PMID:14630934
- Yu JW, et al. (2004) Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 13(5):677-88 PMID:15023338
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Kolhe JA, et al. (2023) The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 83(12):2035-2044.e7 PMID:37295430
- Mishra PK, et al. (2023) Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 34(10):ar99 PMID:37436802
- Smurova K, et al. (2023) Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 14(1):3172 PMID:37263996
- Gavade JN, et al. (2022) Identification of 14-3-3 proteins, Polo kinase, and RNA-binding protein Pes4 as key regulators of meiotic commitment in budding yeast. Curr Biol 32(7):1534-1547.e9 PMID:35240051
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Nitika, et al. (2022) Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by posttranslational modifications. PLoS Biol 20(10):e3001839 PMID:36269765
- Chang Y, et al. (2021) Analysis of the TORC1 interactome reveals a spatially distinct function of TORC1 in mRNP complexes. J Cell Biol 220(4) PMID:33566094
- Hanley SE, et al. (2021) Snx4-assisted vacuolar targeting of transcription factors defines a new autophagy pathway for controlling ATG expression. Autophagy 17(11):3547-3565 PMID:33678121
- Bryant EE, et al. (2019) Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin sensitivity and genome instability. Nucleic Acids Res 47(17):9144-9159 PMID:31350889
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Castelli LM, et al. (2015) The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation. PLoS Genet 11(5):e1005233 PMID:25973932
- Kırlı K, et al. (2015) A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife 4 PMID:26673895
- Goldman A, et al. (2014) The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Mol Cell 55(3):422-435 PMID:24930733
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Gong Y, et al. (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275 PMID:19536198
- Colomina N, et al. (2008) Whi3, a developmental regulator of budding yeast, binds a large set of mRNAs functionally related to the endoplasmic reticulum. J Biol Chem 283(42):28670-9 PMID:18667435
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Protchenko O, et al. (2006) A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum. J Biol Chem 281(30):21445-21457 PMID:16717099
- Tomishige N, et al. (2005) SKG1, a suppressor gene of synthetic lethality of kex2Deltagas1Delta mutations, encodes a novel membrane protein that affects cell wall composition. Yeast 22(2):141-55 PMID:15645486
- Albers M, et al. (2003) Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA 9(1):138-50 PMID:12554883
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
- Ho Y, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180-3 PMID:11805837
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Zhang F, et al. (2025) The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 26(8) PMID:40332024
- King GA, et al. (2023) Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. J Cell Biol 222(2) PMID:36515990
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Pultz D, et al. (2012) Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8(3):796-803 PMID:22218487
- Breitkreutz A, et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043-6 PMID:20489023
- Soulard A, et al. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 21(19):3475-86 PMID:20702584
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- King GA, et al. (2023) Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. J Cell Biol 222(2) PMID:36515990
- Goh CJH, et al. (2022) Diethyl phthalate (DEP) perturbs nitrogen metabolism in Saccharomyces cerevisiae. Sci Rep 12(1):10237 PMID:35715465
- Johnston NR, et al. (2020) Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Front Microbiol 11:1410 PMID:32670247
- Chakrabortee S, et al. (2016) Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits. Cell 167(2):369-381.e12 PMID:27693355
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Cuesta-Marbán Á, et al. (2013) Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J Biol Chem 288(12):8405-8418 PMID:23335509
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Shi Y, et al. (2011) Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Mol Biol Cell 22(21):4093-107 PMID:21880895
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549