Literature Help
TOS4 / YLR183C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Lemon LD, et al. (2022) A Saccharomyces cerevisiae model and screen to define the functional consequences of oncogenic histone missense mutations. G3 (Bethesda) 12(7) PMID:35567477
- Cooke SL, et al. (2021) Tos4 mediates gene expression homeostasis through interaction with HDAC complexes independently of H3K56 acetylation. J Biol Chem 296:100533 PMID:33713703
- Taymaz-Nikerel H, et al. (2020) Insights Into the Mechanism of Anticancer Drug Imatinib Revealed Through Multi-Omic Analyses in Yeast. OMICS 24(11):667-678 PMID:32991258
- Voichek Y, et al. (2016) Expression homeostasis during DNA replication. Science 351(6277):1087-90 PMID:26941319
- Landry BD, et al. (2014) Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO J 33(9):1044-60 PMID:24714560
- Bastos de Oliveira FM, et al. (2012) Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 31(7):1798-810 PMID:22333912
- Ostapenko D, et al. (2012) Identification of anaphase promoting complex substrates in S. cerevisiae. PLoS One 7(9):e45895 PMID:23049888
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Bean JM, et al. (2005) High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics 171(1):49-61 PMID:15965243
- Tu BP, et al. (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751):1152-8 PMID:16254148
- de Lichtenberg U, et al. (2005) New weakly expressed cell cycle-regulated genes in yeast. Yeast 22(15):1191-201 PMID:16278933
- Sundin BA, et al. (2004) Localization of proteins that are coordinately expressed with Cln2 during the cell cycle. Yeast 21(9):793-800 PMID:15282802
- Horak CE, et al. (2002) Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 16(23):3017-33 PMID:12464632
- Huang M and Elledge SJ (2000) The FHA domain, a phosphoamino acid binding domain involved in the DNA damage response pathway. Cold Spring Harb Symp Quant Biol 65:413-21 PMID:12760057
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Ambrocio RE, et al. (2022) A Budding Yeast Model System to Define Biological Pathways Altered by Pathogenic Missense Mutations in Histone Genes Identifies a Link between Histone H3K36 and the TOS4 Gene. FASEB J 36 Suppl 1.
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Hendler A, et al. (2017) Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genet 13(5):e1006778 PMID:28505153
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- Kõivomägi M, et al. (2011) Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 42(5):610-23 PMID:21658602
- Emmert-Streib F and Dehmer M (2009) Predicting cell cycle regulated genes by causal interactions. PLoS One 4(8):e6633 PMID:19688096
- Jothi R, et al. (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294 PMID:19690563
- Rintala E, et al. (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 10:461 PMID:19804647
- Shevchenko A, et al. (2008) Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9(11):R167 PMID:19040720
- Luo F, et al. (2007) Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics 8:299 PMID:17697349
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Slattery MG, et al. (2006) The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae. Eukaryot Cell 5(2):313-20 PMID:16467472
- Yu H and Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724-31 PMID:17003135
- Lai LC, et al. (2005) Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol Cell Biol 25(10):4075-91 PMID:15870279
- Luscombe NM, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308-12 PMID:15372033
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Voichek Y, et al. (2016) Expression homeostasis during DNA replication. Science 351(6277):1087-90 PMID:26941319
- Bastos de Oliveira FM, et al. (2012) Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 31(7):1798-810 PMID:22333912
- Tkach JM, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966-76 PMID:22842922
- Shevchenko A, et al. (2008) Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9(11):R167 PMID:19040720
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Sundin BA, et al. (2004) Localization of proteins that are coordinately expressed with Cln2 during the cell cycle. Yeast 21(9):793-800 PMID:15282802
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Sickmann A, et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207-12 PMID:14576278
- Horak CE, et al. (2002) Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 16(23):3017-33 PMID:12464632
- Huang M and Elledge SJ (2000) The FHA domain, a phosphoamino acid binding domain involved in the DNA damage response pathway. Cold Spring Harb Symp Quant Biol 65:413-21 PMID:12760057
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Lemon LD, et al. (2022) A Saccharomyces cerevisiae model and screen to define the functional consequences of oncogenic histone missense mutations. G3 (Bethesda) 12(7) PMID:35567477
- Galati E, et al. (2021) VID22 counteracts G-quadruplex-induced genome instability. Nucleic Acids Res 49(22):12785-12804 PMID:34871443
- Leng H, et al. (2021) FACT interacts with Set3 HDAC and fine-tunes GAL1 transcription in response to environmental stimulation. Nucleic Acids Res 49(10):5502-5519 PMID:33963860
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Makrantoni V, et al. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda) 7(9):3203-3215 PMID:28754723
- Raja V, et al. (2017) Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis. J Biol Chem 292(3):1092-1102 PMID:27941023
- Shulist K, et al. (2017) Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment. Sci Rep 7(1):11398 PMID:28900268
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Landry BD, et al. (2014) Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO J 33(9):1044-60 PMID:24714560
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Bastos de Oliveira FM, et al. (2012) Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct class of G1/S genes. EMBO J 31(7):1798-810 PMID:22333912
- Ostapenko D, et al. (2012) Identification of anaphase promoting complex substrates in S. cerevisiae. PLoS One 7(9):e45895 PMID:23049888
- Hoppins S, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195(2):323-40 PMID:21987634
- Kõivomägi M, et al. (2011) Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 42(5):610-23 PMID:21658602
- Bandyopadhyay S, et al. (2010) Rewiring of genetic networks in response to DNA damage. Science 330(6009):1385-9 PMID:21127252
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Fiedler D, et al. (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136(5):952-63 PMID:19269370
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
- Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Blaszczak E, et al. (2024) Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 23(1):100695 PMID:38101750
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Bhagwat NR, et al. (2021) SUMO is a pervasive regulator of meiosis. Elife 10 PMID:33502312
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Samanfar B, et al. (2013) Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae. Mol Biosyst 9(6):1351-9 PMID:23467670
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Jin R, et al. (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19(1):284-96 PMID:17989363
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549