Literature Help
IRC25 / YLR021W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 90
- Aliases
-
POC3
2
,
PBA3
3
,
DMP2
4
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Matias AC, et al. (2025) The α5-α6-α7-Pba3-Pba4 Complex: A Starting Unit in Proteasome Core Particle Assembly. Biomolecules 15(5) PMID:40427576
- Velez B, et al. (2024) Mechanism of autocatalytic activation during proteasome assembly. Nat Struct Mol Biol 31(8):1167-1175 PMID:38600323
- Edskes HK, et al. (2021) Proteasome Control of [URE3] Prion Propagation by Degradation of Anti-Prion Proteins Cur1 and Btn2 in Saccharomyces cerevisiae. Genetics 218(1) PMID:33742650
- Berg MD, et al. (2020) Chemical-Genetic Interactions with the Proline Analog L-Azetidine-2-Carboxylic Acid in Saccharomyces cerevisiae. G3 (Bethesda) 10(12):4335-4345 PMID:33082270
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Gallina I, et al. (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6:6533 PMID:25817432
- Wrobel L, et al. (2015) Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524(7566):485-8 PMID:26245374
- Takagi K, et al. (2014) Pba3-Pba4 heterodimer acts as a molecular matchmaker in proteasome α-ring formation. Biochem Biophys Res Commun 450(2):1110-4 PMID:24996173
- Bragoszewski P, et al. (2013) The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol Cell Biol 33(11):2136-48 PMID:23508107
- Hoyt MA, et al. (2008) A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25(3):199-217 PMID:18260085
- Kusmierczyk AR, et al. (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237-44 PMID:18278055
- Lehmann A, et al. (2008) Blm10 binds to pre-activated proteasome core particles with open gate conformation. EMBO Rep 9(12):1237-43 PMID:18927584
- Yashiroda H, et al. (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15(3):228-36 PMID:18278057
- Alvaro D, et al. (2007) Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet 3(12):e228 PMID:18085829
- Le Tallec B, et al. (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27(4):660-74 PMID:17707236
- Wilson MA, et al. (2007) A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics 177(2):773-84 PMID:17660569
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Gemperline DC, et al. (2019) Proteomic analysis of affinity-purified 26S proteasomes identifies a suite of assembly chaperones in Arabidopsis. J Biol Chem 294(46):17570-17592 PMID:31562246
- Rousseau A and Bertolotti A (2016) An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536(7615):184-9 PMID:27462806
- Low YS, et al. (2014) Kinetochore genes are required to fully activate secretory pathway expansion in S. cerevisiae under induced ER stress. Mol Biosyst 10(7):1790-802 PMID:24722431
- Tallec BL and Peyroche A (2012) Using DNA damage sensitivity phenotypes to characterize mutations affecting proteasome function. Methods Mol Biol 832:363-71 PMID:22350898
- Ambroset C, et al. (2011) Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3 (Bethesda) 1(4):263-81 PMID:22384338
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49 PMID:20963216
- Xu P, et al. (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133-45 PMID:19345192
- Lockshon D, et al. (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77-91 PMID:17151231
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
- Briza P, et al. (2002) Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains of Saccharomyces cerevisiae. Yeast 19(5):403-22 PMID:11921089
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Hoyt MA, et al. (2008) A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25(3):199-217 PMID:18260085
- Kusmierczyk AR, et al. (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237-44 PMID:18278055
- Le Tallec B, et al. (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27(4):660-74 PMID:17707236
- Wilson MA, et al. (2007) A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics 177(2):773-84 PMID:17660569
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Edskes HK, et al. (2021) Proteasome Control of [URE3] Prion Propagation by Degradation of Anti-Prion Proteins Cur1 and Btn2 in Saccharomyces cerevisiae. Genetics 218(1) PMID:33742650
- Hoyt MA, et al. (2008) A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25(3):199-217 PMID:18260085
- Kusmierczyk AR, et al. (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237-44 PMID:18278055
- Yashiroda H, et al. (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15(3):228-36 PMID:18278057
- Le Tallec B, et al. (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27(4):660-74 PMID:17707236
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Caydasi AK, et al. (2023) SWR1 chromatin remodeling complex prevents mitotic slippage during spindle position checkpoint arrest. Mol Biol Cell 34(2):ar11 PMID:36542480
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Jawed A, et al. (2022) Balanced activities of Hsp70 and the ubiquitin proteasome system underlie cellular protein homeostasis. Front Mol Biosci 9:1106477 PMID:36660429
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Matias AC, et al. (2022) Hsp70 and Hsp110 Chaperones Promote Early Steps of Proteasome Assembly. Biomolecules 13(1) PMID:36671396
- Edskes HK, et al. (2021) Proteasome Control of [URE3] Prion Propagation by Degradation of Anti-Prion Proteins Cur1 and Btn2 in Saccharomyces cerevisiae. Genetics 218(1) PMID:33742650
- Howell LA, et al. (2019) Proteasome subunit α1 overexpression preferentially drives canonical proteasome biogenesis and enhances stress tolerance in yeast. Sci Rep 9(1):12418 PMID:31455793
- Tam AS, et al. (2019) Selective defects in gene expression control genome instability in yeast splicing mutants. Mol Biol Cell 30(2):191-200 PMID:30462576
- Corcoles-Saez I, et al. (2018) Essential Function of Mec1, the Budding Yeast ATM/ATR Checkpoint-Response Kinase, in Protein Homeostasis. Dev Cell 46(4):495-503.e2 PMID:30130531
- Kuzmin E, et al. (2018) Systematic analysis of complex genetic interactions. Science 360(6386) PMID:29674565
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Choi J, et al. (2017) A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae. PLoS One 12(5):e0176085 PMID:28520786
- Lapointe CP, et al. (2017) Architecture and dynamics of overlapped RNA regulatory networks. RNA 23(11):1636-1647 PMID:28768715
- Shulist K, et al. (2017) Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment. Sci Rep 7(1):11398 PMID:28900268
- Wilms T, et al. (2017) The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability. PLoS Genet 13(6):e1006835 PMID:28604780
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Gallina I, et al. (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6:6533 PMID:25817432
- Wrobel L, et al. (2015) Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524(7566):485-8 PMID:26245374
- Takagi K, et al. (2014) Pba3-Pba4 heterodimer acts as a molecular matchmaker in proteasome α-ring formation. Biochem Biophys Res Commun 450(2):1110-4 PMID:24996173
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Moehle EA, et al. (2012) The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLoS Genet 8(11):e1003101 PMID:23209445
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Addinall SG, et al. (2011) Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 7(4):e1001362 PMID:21490951
- Finnigan GC, et al. (2011) A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187(3):771-83 PMID:21196517
- Park S, et al. (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286(42):36652-66 PMID:21878652
- Scherrer T, et al. (2011) Defining potentially conserved RNA regulons of homologous zinc-finger RNA-binding proteins. Genome Biol 12(1):R3 PMID:21232131
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Fillingham J, et al. (2008) Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 28(13):4342-53 PMID:18458063
- Hoyt MA, et al. (2008) A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25(3):199-217 PMID:18260085
- Kusmierczyk AR, et al. (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237-44 PMID:18278055
- Yashiroda H, et al. (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15(3):228-36 PMID:18278057
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- Le Tallec B, et al. (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27(4):660-74 PMID:17707236
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Pan X, et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124(5):1069-81 PMID:16487579
- Lesage G, et al. (2004) Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167(1):35-49 PMID:15166135
- Tong AH, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808-13 PMID:14764870
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Schulze Y, et al. (2023) Chemical-genomic profiling identifies genes that protect yeast from aluminium, gallium, and indium toxicity. Metallomics 15(6) PMID:37193668
- Ogbede JU, et al. (2021) A genome-wide portrait of pervasive drug contaminants. Sci Rep 11(1):12487 PMID:34127714
- Yu R, et al. (2021) Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 12(1):1981 PMID:33790287
- Baruffini E, et al. (2020) Mechanistic insights on the mode of action of an antiproliferative thiosemicarbazone-nickel complex revealed by an integrated chemogenomic profiling study. Sci Rep 10(1):10524 PMID:32601343
- Berg MD, et al. (2020) Chemical-Genetic Interactions with the Proline Analog L-Azetidine-2-Carboxylic Acid in Saccharomyces cerevisiae. G3 (Bethesda) 10(12):4335-4345 PMID:33082270
- Edouarzin E, et al. (2020) Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids. Microb Cell 7(6):146-159 PMID:32548177
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Gallina I, et al. (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6:6533 PMID:25817432
- Tigano M, et al. (2015) Elongator-dependent modification of cytoplasmic tRNALysUUU is required for mitochondrial function under stress conditions. Nucleic Acids Res 43(17):8368-80 PMID:26240381
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Vandenbosch D, et al. (2013) Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res 13(8):720-30 PMID:24034557
- North M, et al. (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8(6):e1002699 PMID:22685415
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49 PMID:20963216
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Villa-García MJ, et al. (2011) Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 285(2):125-49 PMID:21136082
- Alamgir M, et al. (2010) Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol 10:6 PMID:20691087
- Auesukaree C, et al. (2009) Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50(3):301-10 PMID:19638689
- Watanabe M, et al. (2009) Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth. Curr Genet 55(4):365-80 PMID:19466415
- Yoshikawa K, et al. (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):32-44 PMID:19054128
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Alvaro D, et al. (2007) Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet 3(12):e228 PMID:18085829
- Lockshon D, et al. (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77-91 PMID:17151231
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Enyenihi AH and Saunders WS (2003) Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163(1):47-54 PMID:12586695
- Briza P, et al. (2002) Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains of Saccharomyces cerevisiae. Yeast 19(5):403-22 PMID:11921089
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549