Literature Help
YGR201C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Liu X, et al. (2022) Profiling Yeast Deletion Strains Using Sample Multiplexing and Network-Based Analyses. J Proteome Res 21(6):1525-1536 PMID:35544774
- Guerreiro P, et al. (1996) Sequencing of a 17.6 kb segment on the right arm of yeast chromosome VII reveals 12 ORFs, including CCT, ADE3 and TR-I genes, homologues of the yeast PMT and EF1G genes, of the human and bacterial electron-transferring flavoproteins (beta-chain) and of the Escherichia coli phosphoserine phosphohydrolase, and five new ORFs. Yeast 12(3):273-80 PMID:8904340
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Stynen B, et al. (2018) Changes of Cell Biochemical States Are Revealed in Protein Homomeric Complex Dynamics. Cell 175(5):1418-1429.e9 PMID:30454649
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- Zhang N and Oliver SG (2010) The transcription activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. J Biol Chem 285(9):6465-76 PMID:20022953
- Zhang N, et al. (2009) Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast. Microbiology (Reading) 155(Pt 5):1690-1698 PMID:19383711
- Liu X, et al. (2007) Genetic and comparative transcriptome analysis of bromodomain factor 1 in the salt stress response of Saccharomyces cerevisiae. Curr Microbiol 54(4):325-30 PMID:17334841
- Olarewaju O, et al. (2004) The translation elongation factor eEF1B plays a role in the oxidative stress response pathway. RNA Biol 1(2):89-94 PMID:17179749
- Kellis M, et al. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423(6937):241-54 PMID:12748633
- Willingham S, et al. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302(5651):1769-72 PMID:14657499
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Mishra PK, et al. (2023) Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability. Mol Biol Cell 34(10):ar99 PMID:37436802
- Jagadeesan SK, et al. (2022) Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5'-UTRs. Mol Cell Biochem 477(11):2643-2656 PMID:35598219
- Mount HO, et al. (2018) Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 14(4):e1007319 PMID:29702647
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Schenk L, et al. (2012) La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA 18(3):449-61 PMID:22271760
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Addinall SG, et al. (2008) A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180(4):2251-66 PMID:18845848
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Li Q, et al. (2023) Genome-wide identification of resistance genes and cellular analysis of key gene knockout strain under 5-hydroxymethylfurfural stress in Saccharomyces cerevisiae. BMC Microbiol 23(1):382 PMID:38049732
- Vandenbosch D, et al. (2013) Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res 13(8):720-30 PMID:24034557
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Teng X, et al. (2011) Gene-dependent cell death in yeast. Cell Death Dis 2(8):e188 PMID:21814286
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
- Willingham S, et al. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302(5651):1769-72 PMID:14657499
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549