Literature Help
YGL149W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Grosjean N, et al. (2023) Yeast Deletomics to Uncover Gadolinium Toxicity Targets and Resistance Mechanisms. Microorganisms 11(8) PMID:37630673
- Li Q, et al. (2023) Genome-wide identification of resistance genes and cellular analysis of key gene knockout strain under 5-hydroxymethylfurfural stress in Saccharomyces cerevisiae. BMC Microbiol 23(1):382 PMID:38049732
- Yu R, et al. (2021) Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 12(1):1981 PMID:33790287
- Zatorska E, et al. (2017) Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 18(6) PMID:28598353
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Gaytán BD, et al. (2013) A genome-wide screen identifies yeast genes required for tolerance to technical toxaphene, an organochlorinated pesticide mixture. PLoS One 8(11):e81253 PMID:24260565
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Burston HE, et al. (2009) Regulators of yeast endocytosis identified by systematic quantitative analysis. J Cell Biol 185(6):1097-110 PMID:19506040
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549