Literature Help
VIR1 / YGL036W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Ensinck I, et al. (2023) The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. Elife 12 PMID:37490041
- Park ZM, et al. (2023) Vir1p, the yeast homolog of virilizer, is required for mRNA m6A methylation and meiosis. Genetics 224(1) PMID:36930734
- Park ZM, et al. (2023) Kar4, the yeast homolog of METTL14, is required for mRNA m6A methylation and meiosis. PLoS Genet 19(8):e1010896 PMID:37603553
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Koch LB, et al. (2024) Rewiring of the phosphoproteome executes two meiotic divisions in budding yeast. EMBO J 43(7):1351-1383 PMID:38413836
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Xie H, et al. (2007) Preparative peptide isoelectric focusing as a tool for improving the identification of lysine-acetylated peptides from complex mixtures. J Proteome Res 6(5):2019-26 PMID:17397211
- Titz B, et al. (2006) Transcriptional activators in yeast. Nucleic Acids Res 34(3):955-67 PMID:16464826
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Ensinck I, et al. (2023) The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. Elife 12 PMID:37490041
- Park ZM, et al. (2023) Vir1p, the yeast homolog of virilizer, is required for mRNA m6A methylation and meiosis. Genetics 224(1) PMID:36930734
- Liu Q, et al. (2020) Yeast mismatch repair components are required for stable inheritance of gene silencing. PLoS Genet 16(5):e1008798 PMID:32469861
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Ensinck I, et al. (2023) The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. Elife 12 PMID:37490041
- Josefson R, et al. (2023) The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae. Sci Rep 13(1):9285 PMID:37286562
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Park ZM, et al. (2023) Vir1p, the yeast homolog of virilizer, is required for mRNA m6A methylation and meiosis. Genetics 224(1) PMID:36930734
- Smurova K, et al. (2023) Rio1 downregulates centromeric RNA levels to promote the timely assembly of structurally fit kinetochores. Nat Commun 14(1):3172 PMID:37263996
- Yang X, et al. (2022) The ubiquitin-proteasome system regulates meiotic chromosome organization. Proc Natl Acad Sci U S A 119(17):e2106902119 PMID:35439061
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Ciftci-Yilmaz S, et al. (2018) A Genome-Wide Screen Reveals a Role for the HIR Histone Chaperone Complex in Preventing Mislocalization of Budding Yeast CENP-A. Genetics 210(1):203-218 PMID:30012561
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Castelli LM, et al. (2015) The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation. PLoS Genet 11(5):e1005233 PMID:25973932
- Porter DF, et al. (2015) Target selection by natural and redesigned PUF proteins. Proc Natl Acad Sci U S A 112(52):15868-73 PMID:26668354
- Elbaz-Alon Y, et al. (2014) A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 30(1):95-102 PMID:25026036
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Ito T, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569-74 PMID:11283351
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Harris A and Ünal E (2023) The transcriptional regulator Ume6 is a major driver of early gene expression during gametogenesis. Genetics 225(2) PMID:37431893
- Arras SDM, et al. (2022) Creeping yeast: a simple, cheap and robust protocol for the identification of mating type in Saccharomyces cerevisiae. FEMS Yeast Res 22(1) PMID:35298616
- Liu Q, et al. (2020) Yeast mismatch repair components are required for stable inheritance of gene silencing. PLoS Genet 16(5):e1008798 PMID:32469861
- Chakrabortee S, et al. (2016) Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits. Cell 167(2):369-381.e12 PMID:27693355
- Krol K, et al. (2015) A genomic screen revealing the importance of vesicular trafficking pathways in genome maintenance and protection against genotoxic stress in diploid Saccharomyces cerevisiae cells. PLoS One 10(3):e0120702 PMID:25756177
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Jarolim S, et al. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda) 3(12):2321-33 PMID:24142923
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549